【題目】(1)如圖①,已知直線l1l2,且l3l1l2分別交于A,B兩點(diǎn),點(diǎn)P在線段AB上,則∠1,∠2,∠3之間的等量關(guān)系是____;

(2)如圖②,點(diǎn)AB處北偏東40°方向,在C處北偏西45°方向,則∠BAC____°.

(3)如圖③,∠ABD和∠BDC的平分線交于點(diǎn)E,BEAB于點(diǎn)F,∠1+∠290°,試說明:ABAB,并探究∠2與∠3的數(shù)量關(guān)系.

【答案】(1)∠1+∠2=∠32853)見解析,∠2+∠390°

【解析】

1)作PMAC.根據(jù)平行線間的傳遞性,得PMBD.再由平行線的性質(zhì),得∠1=∠CPM,∠2=∠MPD.所以,∠1+∠2=∠3.2)由題可知∠BAC=∠B+∠C,所以,∠BAC85°.3)由題意,先證明ABAB.再通過角的變換,得到∠BED=∠DAB90°,所以∠3+∠FDE90,最后得到∠2+∠390.

(1)如答圖,作PMAC,

ACBD,∴PMBD,

∴∠1=∠CPM,∠2=∠MPD,

∴∠1+∠2=∠CPM+∠MPD=∠CPD=∠3.

(2)由題可知∠BAC=∠B+∠C.

∵∠B40°,∠C45°,

∴∠BAC40°45°85°.

(3)證明:∵BE,DE分別平分∠ABD,∠BDC,

∴∠1ABD,∠2BDC.

∵∠1+∠290°,

∴∠ABD+∠BDC180°,

ABAB.

DE平分∠BDC,

∴∠2=∠FDE.

∵∠1+∠290°,

∴∠BED=∠DAB90°,

∴∠3+∠FDE90°,

∴∠2+∠390°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長(zhǎng)為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°到正方形AB′C′D′,則圖中陰影部分的面積為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了檢驗(yàn)教室里的矩形門框是否合格,某班的四個(gè)學(xué)習(xí)小組用三角板和細(xì)繩分別測(cè)得如下結(jié)果,其中不能判定門框是否合格的是( )

A. AB=CD,AD=BC,AC=BD B. AC=BD,∠B=∠C=90° C. AB=CD,∠B=∠C=90° D. AB=CD,AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元/件,試營(yíng)銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10件
(1)寫出商場(chǎng)銷售這種文具,每天所得的銷售利潤(rùn)w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤(rùn)最大;
(3)商場(chǎng)的營(yíng)銷部結(jié)合上述情況,提出了A、B兩種營(yíng)銷方案:
方案A:該文具的銷售單價(jià)高于進(jìn)價(jià)且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤(rùn)至少為25元.請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀以下材料:

對(duì)數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(J.Nplcr,1550﹣1617年),納皮爾發(fā)明對(duì)數(shù)是在指數(shù)書寫方式之前,直到18世紀(jì)瑞士數(shù)學(xué)家歐拉(Evlcr,1707﹣1783年)才發(fā)現(xiàn)指數(shù)與對(duì)數(shù)之間的聯(lián)系.

對(duì)數(shù)的定義:一般地,若ax=N(a0,a1),那么x叫做以a為底N的對(duì)數(shù),記作:x=logaN.比如指數(shù)式24=16可以轉(zhuǎn)化為4=log216,對(duì)數(shù)式2=log525可以轉(zhuǎn)化為52=25.

我們根據(jù)對(duì)數(shù)的定義可得到對(duì)數(shù)的一個(gè)性質(zhì):loga(MN)=logaM+logaN(a0,a1,M0,N0);理由如下:

設(shè)logaM=m,logaN=n,則M=am,N=an

MN=aman=am+n,由對(duì)數(shù)的定義得m+n=loga(MN)

又∵m+n=logaM+logaN

loga(MN)=logaM+logaN

解決以下問題:

(1)將指數(shù)43=64轉(zhuǎn)化為對(duì)數(shù)式_____;

(2)證明loga=logaM﹣logaN(a0,a1,M0,N0)

(3)拓展運(yùn)用:計(jì)算log32+log36﹣log34=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,、正方形、正方形的頂點(diǎn)均在格點(diǎn)上.

1)以格點(diǎn)為原點(diǎn),建立合適的平面直角坐標(biāo)系,使得、坐標(biāo)分別為、,則點(diǎn)的坐標(biāo)為______,點(diǎn)的坐標(biāo)為_______;

2)利用面積計(jì)算線段________

3)點(diǎn)為直線上一動(dòng)點(diǎn),求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,AC=6cm,BC=8cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),按C→B→A的路徑,以2cm每秒的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t___________時(shí),ACP是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為2,a2+1,則點(diǎn)P所在的象限是____;以方程組 的解為坐標(biāo)的點(diǎn)x,y在平面直角坐標(biāo)系中的位置是__________;在平面直角坐標(biāo)系中,如果mn0,請(qǐng)寫出點(diǎn)m,|n|可能在的所有象限:____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:

(1)43(x2)x.

(2)1.

(3)x.

查看答案和解析>>

同步練習(xí)冊(cè)答案