【題目】如圖:007漁船在南海海面上沿正東方向勻速航行,在A點觀測到漁船C在北偏東60°方向的我國某傳統(tǒng)漁場捕魚作業(yè).若007漁船航向不變,航行半小時后到達B點,觀測到漁船C在東北方向上.問:007漁船再按原航向航行多長時間,離漁船C的距離最近?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當(dāng)其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤10),過點D作DF⊥BC于點F,連接DE,EF.
(1)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;
(2)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC與DE相交于點F,連接CD,EB.
(1)圖中還有幾對全等三角形,請你一一列舉;
(2)求證:CF=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小玲家在某24層樓的頂樓,對面新造了一幢28米高的圖書館,小玲在樓頂A處看圖書館樓頂B處和樓底C處的俯角分別是45°,60°.請問:
(1)兩樓的間距是多少米?(精確到1m)
(2)小玲家的這幢住宅樓的平均層高是多少米?(精確到0.1m)
(參考了數(shù)據(jù): ≈1.73,≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,Rt△ABC中,∠ABC=90°,∠CAB的平分線交BC于點O,以O為圓心,OB長為半徑作⊙O.
(1)求證:⊙O與AC相切.
(2)若AB=6,AC=10.
①求⊙O的半徑;
②如圖②,延長AO交⊙O于點D,過點D作⊙O的切線,分別交AC、AB的延長線于E、F,試求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是一塊含30°,60°,90°的直角三角板,直角頂點O位于坐標(biāo)原點,斜邊AB垂直于x軸,頂點A在函數(shù)y1=(x>0)的圖象上,頂點B在函數(shù)y2=(x>0)的圖象上,∠ABO=30°,則= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD的一組對邊AD、BC的延長線交于點E.
(1)如圖①,若∠ABC=∠ADC=90°,求證:ED·EA=EC·EB;
(2)如圖②,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面積為6,求四邊形ABCD的面積;
(3)如圖③,另一組對邊AB、DC的延長線相交于點F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接寫出AD的長(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣+mx+4﹣m的圖象與x軸交于A、B兩點(A在B的左側(cè)),與),軸交于點C.拋物線的對稱軸是直線x=﹣2,D是拋物線的頂點.
(1)求二次函數(shù)的表達式;
(2)當(dāng)﹣<x<1時,請求出y的取值范圍;
(3)連接AD,線段OC上有一點E,點E關(guān)于直線x=﹣2的對稱點E'恰好在線段AD上,求點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標(biāo)為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.
其中正確結(jié)論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com