【題目】在平面直角坐標(biāo)系中,已知拋物線經(jīng)過(guò)A﹣40),B0,﹣4),C2,0)三點(diǎn).

1)求拋物線的解析式;

2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.

【答案】(1;(2S=﹣m2﹣4mS的最大值為4

【解析】試題分析:(1)根據(jù)拋物線與x軸的交點(diǎn)AC坐標(biāo)設(shè)出拋物線的二根式方程,將B坐標(biāo)代入即可確定出解析式;

2)過(guò)Mx軸垂線MN,三角形AMB面積=梯形MNOB面積+三角形AMN面積三角形AOB面積,求出即可.

試題解析:(1)設(shè)拋物線解析式為y=ax+4)(x﹣2),將B0,﹣4)代入得:﹣4=﹣8a,即a=,則拋物線解析式為y=x+4)(x﹣2),即;

2)過(guò)MMNx軸,將x=m代入拋物線得:y=m2+m﹣4,即Mm, m2+m﹣4),MN=|m2+m﹣4|=﹣m2﹣m+4,ON=﹣mA﹣4,0),B0﹣4),OA=OB=4,∴△AMB的面積為S=SAMN+S梯形MNOB﹣SAOB=×4+m×m2﹣m+4+×﹣m×m2﹣m+4+4×4×4

=2m2﹣m+4﹣2m﹣8

=﹣m2﹣4m

=﹣m+22+4

當(dāng)m=﹣2時(shí),S取得最大值,最大值為4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若x2+2(m+1)x+25是一個(gè)完全平方式,那么m的值( )

A. 4 或-6 B. 4 C. 6 或4 D. -6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小麗想用一塊面積為400平方厘米的正方形紙片,沿著邊的方向裁出一塊面積為300平方厘米的長(zhǎng)方形紙片,使它的長(zhǎng)寬之比為3:2.不知能否裁出來(lái),正在發(fā)愁.小明見(jiàn)了說(shuō):“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意小明的說(shuō)法嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖(①)為雅婷左手拿著3張深灰色與2張淺灰色的牌迭在一起的情形.以下是她每次洗牌的三個(gè)步驟:

步驟一:用右手拿出迭在最下面的2張牌,如圖(②).

步驟二:將右手拿的2張牌依序交錯(cuò)插入左手拿的3張牌之間,如圖(③).

步驟三:用左手拿著顏色順序已改變的5張牌,如圖(④).

若依上述三個(gè)步驟洗牌,從圖(①)的情形開(kāi)始洗牌若干次后,其顏色順序會(huì)再次與圖(①)相同,則洗牌次數(shù)可能為下列何者?(

A. 18 B. 20 C. 25 D. 27

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,汽車(chē)在東西向的公路l上行駛,途中AB,CD四個(gè)十字路口都有紅綠燈.AB之間的距離為800米,BC1000米, CD1400米,且l上各路口的紅綠燈設(shè)置為:同時(shí)亮紅燈或同時(shí)亮綠燈,每次紅(綠)燈亮的時(shí)間相同,紅燈亮的時(shí)間與綠燈亮的時(shí)間也相同.若綠燈剛亮?xí)r,甲汽車(chē)從A路口以每小時(shí)30千米的速度沿l向東行駛,同時(shí)乙汽車(chē)從D路口以相同的速度沿l向西行駛,這兩輛汽車(chē)通過(guò)四個(gè)路口時(shí)都沒(méi)有遇到紅燈,則每次綠燈亮的時(shí)間可能設(shè)置為( )

A. 50B. 45C. 40D. 35

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A(3,2)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)A′的坐標(biāo)為(

A.(3,2)B.(3,﹣2)C.(32)D.(3,﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三角形的三邊長(zhǎng)分別是3,8,x,若x的值為偶數(shù),則x的值有(

A. 6個(gè) B. 5個(gè) C. 4個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】16的算術(shù)平方根是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題,其中真命題有( )

(1)有理數(shù)乘以無(wú)理數(shù)一定是無(wú)理數(shù);

(2)順次連接等腰梯形各邊中點(diǎn)所得的四邊形是菱形;

(3)在同圓中,相等的弦所對(duì)的弧也相等;

(4)如果正九邊形的半徑為a,那么邊心距為asin20°.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案