精英家教網 > 初中數學 > 題目詳情

【題目】定義:如圖1,已知銳角內有定點,過點任意作一條直線,分別交射線,于點M,N.若是線段的中點時,則稱直線的中點直線.如圖2,射線的解析式為軸的夾角為,,的中點直線.

1)求直線的解析式;

2)若過點任意作一條直線,分別交射線,軸的正半軸于點,,記的面積為,的面積為.求證:

【答案】1)直線MN的解析式為;(2)見解析.

【解析】

1)設點M的坐標為,分別過點M、Nx軸的垂線,利用,求出,得到點M的坐標,再利用待定系數法求直線MN解析式即可;

2)設,過點軸交,根據軸,點P是線段MN的中點可證得,進而得到即可求證

1)解:如圖,設點的坐標為

軸,軸,垂足分別為,

,

∵點是線段的中點,P(3,1),

∴PB=1,

,即,解得

∴點M的坐標為1,2,

設直線的解析式為,

,,代入,

,解得

∴中點直線的解析式為

2)證明:如圖,不妨設,過點軸交

則有,

的中點,∴,∴

,∴

,∴,

重合時,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB16.連接AC,點P在線段AC上,PAAC,作射線PM與邊AB相交于點E.將射線PM繞點P逆時針旋轉90°得到射線PN,射線PN與邊BC相交于點F.當AEP的面積為時.在邊CD上取一點G.則AFG周長的最小值是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是水平放置的水管截面示意圖,已知水管的半徑為50cm,水面寬AB=80cm,則水深CD約為______cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知,以為直徑的交邊于點,相切.

1)若,求證:;

2)點上一點,且,兩點在的異側.若,,求的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題探究

1)如圖①,已知與直線,過于點,的半徑為,則圓上一點的距離的最小值是______;

     

2)如圖②,在四邊形中,,,,過點作一條直線交邊,若平分四邊形的面積,求的長;

問題解決

3)如圖③所示,是由線段、與弧圍成的花園的平面示意圖,,,//CDBC,點的中點,所對的圓心角為.管理人員想在上確定一點,在四邊形區(qū)域種植花卉,其余區(qū)域種植草坪,并過點修建一條小路,把四邊形分成面積相等且盡可能小的兩部分,分別種植不同的花卉.問是否存在滿足上述條件的小路?若存在,請求出的長,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】新冠病毒潛伏期較長,能通過多種渠道傳播,以在生活中就要做好最基本的防護:在公共區(qū)域和陌生人保持距離,勤洗手,出門戴口罩某區(qū)中小學陸續(xù)復學后,為了提高同學們的防疫意識,決定組織防疫知識競賽活動,評出一、二三等獎各若干名,并分別發(fā)給洗手液、溫度計和口罩作為獎品.

1)如果溫度計的單價比口罩的單價多元,購買洗手液瓶和口罩個共需元;購買瓶洗手液比購買支溫度計多花元,求洗手液、溫度計和口罩的單價各是多少元?

2)已知本次競賽活動獲得三等獎的人數是獲得二等獎人數的倍,且獲得一等獎的人數不超過獲獎總人數的五分之一,如果購買這三種獎品的總費用為元,求本次競賽活動獲得一、二、三等獎各有多少人.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】乒乓球是我國的國球,比賽采用單局分制,分團體、單打、雙打等。在某站公開賽中,某直播平臺同時直播場男單四分之一決賽,四場比賽的球桌號分別為“”,“”,“”,“”(假設場比賽同時開始),小寧和父親準備一同觀看其中的一場比賽,但兩人的意見不統一,于是采用抽簽的方式決定,抽簽規(guī)則如下:將正面分別寫有數字“”,“”,“”,“”的四張卡片(除數字不同外,其余均相同)分別對應球桌號“”,“”,“”,“”,卡片洗勻后背面朝上放在桌子上,父親先從中隨機抽取一張,小寧再從剩下的張卡片中隨機抽取一張,比較兩人所抽卡片上的數字,觀看較大的數字對應球桌的比賽。

(1)下列事件中屬于必然事件的是

A.抽到的是小寧最終想要看的一場比賽的球桌號

B.抽到的是父親最終想要看的一場比賽的球桌號

C.小寧和父親抽到同一個球桌號

D.小寧和父親抽到的球桌號不一樣

(2)用列表法或樹狀圖法求小寧和父親最終觀看“T”球桌比賽的概率。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,中,邊上一點,是線段上的動點,連接,以為斜邊在的下方作等腰連接從點出發(fā)運動至點停止的過程中,面積的最大值等于_____________________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數yax2+bx+ca≠0)的圖象如圖所示,下列結論:①b24ac0;②abc0;③4a+b0;④4a2b+c0.其中正確結論的個數是( 。

A.4B.3C.2D.1

查看答案和解析>>

同步練習冊答案