【題目】閱讀材料:若,求m、n的值.
解: ,
,
,
.
根據(jù)你的觀察,探究下面的問題:
(1)己知,求的值.
(2)已知△ABC的三邊長a、b、c都是正整數(shù),且滿足,求邊c的最大值.
(3) 若己知,求的值.
【答案】(1)2(2)6(3)7
【解析】分析:(1)將多項(xiàng)式第三項(xiàng)分項(xiàng)后,結(jié)合并利用完全平方公式化簡,根據(jù)兩個非負(fù)數(shù)之和為0,兩非負(fù)數(shù)分別為0求出x與y的值,即可求出x﹣y的值;
(2)將已知等式25分為9+16,重新結(jié)合后,利用完全平方公式化簡,根據(jù)兩個非負(fù)數(shù)之和為0,兩非負(fù)數(shù)分別為0求出a與b的值,根據(jù)邊長為正整數(shù)且三角形三邊關(guān)系即可求出c的長;
(3)由a﹣b=4,得到a=b+4,代入已知的等式中重新結(jié)合后,利用完全平方公式化簡,根據(jù)兩個非負(fù)數(shù)之和為0,兩非負(fù)數(shù)分別為0求出b與c的值,進(jìn)而求出a的值,即可求出a﹣b+c的值.
詳解:(1)∵x2+2xy+2y2+2y+1=0
∴(x2+2xy+y2)+(y2+2y+1)=0
∴(x+y)2+(y+1)2=0
∴x+y=0 y+1=0
解得:x=1,y=﹣1
∴x﹣y=2;
(2)∵a2+b2﹣6a﹣8b+25=0
∴(a2﹣6a+9)+(b2﹣8b+16)=0
∴(a﹣3)2+(b﹣4)2=0
∴a﹣3=0,b﹣4=0
解得:a=3,b=4
∵三角形兩邊之和>第三邊
∴c<a+b,c<3+4,∴c<7.又∵c是正整數(shù),∴△ABC的最大邊c的值為4,5,6,∴c的最大值為6;
(3)∵a﹣b=4,即a=b+4,代入得:(b+4)b+c2﹣6c+13=0,整理得:(b2+4b+4)+(c2﹣6c+9)=(b+2)2+(c﹣3)2=0,∴b+2=0,且c﹣3=0,即b=﹣2,c=3,a=2,則a﹣b+c=2﹣(﹣2)+3=7.
故答案為:7.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的方程.
(1)求證:無論取何值,這個方程總有實(shí)數(shù)根.
(2)若方程的兩根都是正數(shù),求的取值范圍.
(3)以方程的兩根為兩邊,斜邊為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個實(shí)數(shù)根為x1,x2(x1<x2),分別以x1,x2為橫坐標(biāo)和縱坐標(biāo)得到點(diǎn)M(x1,x2),則稱點(diǎn)M為該一元二次方程的衍生點(diǎn).
(1)若方程為x2-2x=0,寫出該方程的衍生點(diǎn)M的坐標(biāo).
(2)若關(guān)于x的一元二次方程x2-(2m+1)x+2m=0(m<0)的衍生點(diǎn)為M,過點(diǎn)M向x軸和y軸作垂線,兩條垂線與坐標(biāo)軸恰好圍成一個正方形,求m的值.
(3)是否存在b,c,使得不論k(k≠0)為何值,關(guān)于x的方程x2+bx+c=0的衍生點(diǎn)M始終在直線y=kx-2(k-2)的圖象上,若有請直接寫出b,c的值,若沒有說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個頂點(diǎn)分別是A(2,2),B(4,0),C(4,﹣4)
(1)以點(diǎn)O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請?jiān)?/span>y軸右側(cè)畫出△A2B2C2
(2)求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)有一長為18米,寬為6米的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們面積之和為60平方米,兩塊綠地之間及周邊留有寬度相等的人行通道,則人行道的寬度為(。┟祝
A. 2B. 1C. 8或1D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校園空地上有一面墻,長度為20m,用長為32m的籬笆和這面墻圍成一個矩形花圃,如圖所示.
(1)能圍成面積是126m2的矩形花圃嗎?若能,請舉例說明;若不能,請說明理由.
(2)若籬笆再增加4m,圍成的矩形花圃面積能達(dá)到170m2嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=400,BC=600,∠ABC=45°,在△ABC內(nèi)作一個內(nèi)接矩形DEGF(點(diǎn)E、F在邊BC上,點(diǎn)D、G分別在邊AB和AC上),則矩形DEFG的對角線EG最短為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】西安市2016年中考,綜合素質(zhì)測試滿分為100分.某校為了調(diào)查學(xué)生對于綜合素質(zhì)的掌握程度,在九年級學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行模擬測試,并將測試成績繪制成下面兩幅統(tǒng)計(jì)圖.
試根據(jù)統(tǒng)計(jì)圖中提供的數(shù)據(jù),回答下面問題:
(1)計(jì)算樣本中,成績?yōu)?/span>98分的學(xué)生有 ,并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)樣本中,測試成績的中位數(shù)是 分,眾數(shù)是 分.
(3)若該校九年級共有2000名學(xué)生,根據(jù)此次模擬成績估計(jì)該校九年級中考綜合素質(zhì)測試將有多少名學(xué)生可以獲得滿分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將拋物線y=-3x2先向左平移3個單位長度,再向下平移4個單位長度后所得到的拋物線的表達(dá)式為( )
A.y=-3(x+3)4B.y=-3(x3)4
C.y=-3(x+3)+4D.y=-3(x3) +4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com