【題目】如圖,將兩塊直角三角尺的直角頂點(diǎn)C疊放在一起.
(1)判斷∠ACE與∠BCD的大小關(guān)系,并說(shuō)明理由;
(2)若∠DCE=30°,求∠ACB的度數(shù);
(3)猜想:∠ACB與∠DCE有怎樣的數(shù)量關(guān)系,并說(shuō)明理由.
【答案】
(1)解:∠ACE=∠BCD,理由如下:
∵∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,
∴∠ACE=∠BCD
(2)解:由余角的定義,得∠ACE=90°﹣∠DCE=90°﹣30°=60°,
由角的和差,得∠ACB=∠ACE+∠BCE=60°+90°=150°
(3)解:∠ACB+∠DCE=180°,理由如下:
由角的和差,得∠ACB=∠BCE+∠ACE,
∠ACB+∠DCE=∠BCE+(∠ACE+DCE)=∠BCE+∠ACE=180°
【解析】 (1)觀察圖形,根據(jù)同角的余角相等,可得出∠ACE+∠DCE=∠BCD+∠DCE=90°,可證得∠ACE=∠BCD。
(2) 根據(jù)余角的性質(zhì)求出∠ACE的度數(shù),再根據(jù)∠ACB=∠ACE+∠BCE,計(jì)算即可得出答案。
(3)根據(jù)圖形易證∠ACB=∠BCE+∠ACE,而∠ACE+∠DCE=90°,就可證出∠ACB與∠DCE之和為180°。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(3, ),點(diǎn)C的坐標(biāo)為( ,0),點(diǎn)P為斜邊OB上的一動(dòng)點(diǎn),則PA+PC的最小值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點(diǎn)E在AB上,以AE為直徑的⊙O與BC相切于點(diǎn)D,連接AD.
(1)求證:AD平分∠BAC;
(2)若⊙O的直徑為10,sin∠DAC=,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P是Rt△ABC斜邊AB上一動(dòng)點(diǎn)(不與A,B重合),分別過(guò)A,B向直線CP作垂線,垂足分別為E,F(xiàn).
(1)如圖1,當(dāng)點(diǎn)P為AB的中點(diǎn)時(shí),連接AF,BE.求證:四邊形AEBF是平行四邊形;
(2)如圖2,當(dāng)點(diǎn)P不是AB的中點(diǎn),取AB的中點(diǎn)Q,連接EQ,F(xiàn)Q.試判斷△QEF的形狀,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,由兩個(gè)長(zhǎng)為9,寬為3的全等矩形疊合而得到四邊形ABCD,則四邊形ABCD面積的最大值是( )
A.15
B.16
C.19
D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解外來(lái)務(wù)工子女就學(xué)情況,某校對(duì)七年級(jí)各班級(jí)外來(lái)務(wù)工子女的人數(shù)情況進(jìn)行了統(tǒng)計(jì),發(fā)現(xiàn)各班級(jí)中外來(lái)務(wù)工子女的人數(shù)有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅統(tǒng)計(jì)圖:
(1)求該校七年級(jí)平均每個(gè)班級(jí)有多少名外來(lái)務(wù)工子女?并將該條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)學(xué)校決定從只有2名外來(lái)務(wù)工子女的這些班級(jí)中,任選兩名進(jìn)行生活資助,請(qǐng)用列表法或畫樹(shù)狀圖的方法,求出所選兩名外來(lái)務(wù)工子女來(lái)自同一個(gè)班級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的中線.
(1)畫圖:延長(zhǎng)AD到E,使ED=AD,連接BE、CE;
(2)四邊形ABEC是平行四邊形嗎?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B在反比例函數(shù)(k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負(fù)半軸上,CD=k,已知AB=2AC,E是AB的中點(diǎn),且△BCE的面積是△ADE的面積的2倍,則k的值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將長(zhǎng)方形紙片ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕EF分別與AB、DC交于點(diǎn)E和點(diǎn)F.
(1)證明:△ADF≌△AB′E;
(2)若AD=12,DC=18,求△AEF的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com