【題目】如圖:直線AB經過點A(0,3)點B( ,0),點M在y軸上,⊙M經過點A、B,交x軸于另一點C.
(1)求直線AB的解析式;
(2)求點M的坐標;
(3)點P是劣弧AC上一個動點,當P點運動時,問:線段PA,PB,PC有什么數量關系?并給出證明.
【答案】
(1)解:設直線AB的解析式為y=kx+b,
把點A(0,3)和點B( ,0)代入y+kx+b得到 ,
解得 ,
∴直線AB的解析式為y=﹣ x+3
(2)解:如圖1中,連接BM.設AM=BM=r.
在Rt△BMO中,
∵OM2+OB2=BM2,OM=3﹣r,OB= ,
∴(3﹣r)2+( )2=r2,
∴r=2,
∴OM=3﹣2=1,
∴點M坐標為(0,1)
(3)解:結論:PB=PA+PC,理由如下:
如圖2中,連接AC、在PB上截取PN=PC,連接CN.
∵OM⊥BC,
∴OC=OB,
∴AC=AB,
∵tan∠ABO= = = ,
∴∠ABC=60°,
∴△ABC是等邊三角形,
∴AC=CB,∠ACB=∠CAB=60°,
∴∠CPB=∠CAB=60°,∵PC=PN,
∴△PCN是等邊三角形,
∴CP=CN,∠PCN=60°,
∴∠PCN=∠ACB=60°,
∴∠PCA=∠NCB,∵PC=CN,CA=CB,
∴△PCA≌△NCB,
∴PA=BN,
∵PB=PN+BN,PN=PC,BN=PA,
∴PB=PA+PC.
【解析】(1)設直線AB的解析式為y=kx+b,把點A(0,3)和點B( ,0)代入y+kx+b得到 解方程組即可.(2)如圖1中,連接BM.設AM=BM=r.在Rt△BMO中,由OM2+OB2=BM2 , OM=3﹣r,OB= ,可得(3﹣r)2+( )2=r2 , 解方程即可.(3)結論:PB=PA+PC,如圖2中,連接AC、在PB上截取PN=PC,連接CN.首先證明△ACB,△PCN都是等邊三角形,再證明△PCA≌△NCB,推出PA=BN,由此即可解決問題.
科目:初中數學 來源: 題型:
【題目】把一副三角板如圖甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=12,DC=14,把三角板DCE繞點C順時針旋轉15°得到△D1CE1(如圖乙),此時AB與 CD1交于點O,則線段AD1的長為( )
A.6
B.10
C.8
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請閱讀下列材料:
計算:.
解法一:原式=
解法二:原式=(-)÷[( )-( )]=÷=-×3=-.
解法三:原式的倒數為()÷(-)=×(-30)-×(-30)+×(-30)-×(-30)=-20+3-5+12=-10,
故原式=-.
(1)上述解法得出的結果不同,肯定有錯誤的解法,你認為解法________是錯誤的,在正確的解法中,你認為解法________最簡捷;
(2)利用(1)中你認為最簡捷的解法計算:
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】東方紅中學位于東西方向的一條路上,一天我們學校的李老師出校門去家訪,他先向西走100米到聰聰家,再向東走150米到青青家,再向西走200米到剛剛家,請問:
(1)如果把這條路看作一條數軸,以向東為正方向,以校門口為原點,請你在這條數軸上標出聰聰家與青青家的大概位置(數軸上一格表示50米).
(2)聰聰家與剛剛家相距多遠?
(3)聰聰家向西20米所表示的數是多少?
(4)你認為可用什么辦法求數軸上兩點之間的距離?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知等腰△AOB,AO=AB=5,OB=6.以O為原點,以OB邊所在的直線為x軸,以垂直于OB的直線為y軸建立平面直角坐標系.
(1)求點A的坐標;
(2)若點A關于y軸的對稱點為M,點N的橫、縱坐標之和等于點A的橫坐標,請在圖中畫出一個滿足條件的△AMN,并直接在圖上標出點M,N的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班為準備半期考表彰的獎品,計劃從友誼超市購買筆記本和水筆共40件.在獲知某網店有“雙十一”促銷活動后,決定從該網店購買這些獎品.已知筆記本和水筆在這兩家商店的零售價分別如下表,且在友誼超市購買這些獎品需花費90元.求從網店購買這些獎品可節(jié)省多少元.
品 名 商 店 | 筆記本 (元/件) | 水筆 (元/件) |
友誼超市 | 2.4 | 2 |
網 店 | 2 | 1.8 |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E,F分別是AB,CD上的點,點G是BC的延長線上一點,且∠B=∠DCG=∠D,則下列判斷中,錯誤的是( )
A. ∠AEF=∠EFC B. ∠A=∠BCF C. ∠AEF=∠EBC D. ∠BEF+∠EFC=180°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=8,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處,當△CEB′為直角三角形時,BE的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了考察甲、乙兩種成熟期小麥的株高長勢情況,現從中隨機抽取6株,并測得它們的株高(單位:cm)如下表所示:
甲 | 63 | 66 | 63 | 61 | 64 | 61 |
乙 | 63 | 65 | 60 | 63 | 64 | 63 |
(Ⅰ)請分別計算表內兩組數據的方差,并借此比較哪種小麥的株高長勢比較整齊?
(Ⅱ)現將進行兩種小麥優(yōu)良品種雜交實驗,需從表內的甲、乙兩種小麥中,各隨機抽取一株進行配對,以預估整體配對情況,請你用列表法或畫樹狀圖的方法,求所抽取的兩株配對小麥株高恰好都等于各自平均株高的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com