【題目】如圖1是兩塊等邊△ABC和等邊△CDE的紙片疊放在一起的圖形.
(1)如圖2,固定△ABC,將△CDE繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)30°,連接AD,BE,則線段BE,AD之間的大小關(guān)系如何?證明你的結(jié)論;
(2)如圖3,若將△CDE繞點(diǎn)C按順時(shí)針?lè)较蛉我庑D(zhuǎn)一個(gè)角度(小于180°),連接AD,BE,則線段BE,AD之間大小關(guān)系如何?證明你的結(jié)論.
【答案】(1)BE=AD.詳見(jiàn)進(jìn)行;(2)BE=AD.詳見(jiàn)解析.
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)和等邊三角形的性質(zhì)可以得到∠BCE=∠ACD=30°,CA=CB,CD=CE,由此可證△BCE≌△ACD,然后即可得到BE和AD的關(guān)系;
(2)利用和(1)一樣的方法證△BCE≌△ACD,由此即可BE和AD的關(guān)系.
解:(1)BE=AD.
證明:因?yàn)?/span>△CDE繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)30°,
所以∠BCE=∠ACD=30°.
因?yàn)?/span>△ABC和△CDE都是等邊三角形,
所以CA=CB,CD=CE.
所以△BCE≌△ACD.
所以BE=AD.
(2)BE=AD.
證明:若△CDE繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)角α,
則∠BCE=∠ACD=α.
又CA=CB,CD=CE,
所以△BCE≌△ACD.
所以BE=AD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC為等邊三角形,D為BC延長(zhǎng)線上的一點(diǎn),CE平分∠ACD,CE=BD,求證:△ADE為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只箱子里共有3個(gè)球,其中2個(gè)白球,1個(gè)紅球,它們除顏色外均相同。
(1)從箱子中任意摸出一個(gè)球是白球的概率是多少?
(2)從箱子中任意摸出一個(gè)球,不將它放回箱子,攪勻后再摸出一個(gè)球,求兩次摸出球的都是白球的概率,并畫(huà)出樹(shù)狀圖。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從-2,-1,1,2這四個(gè)數(shù)中,任取兩個(gè)不同的數(shù)作為一次函數(shù)y=kx+b的系數(shù)k,b,則一次函數(shù)y=kx+b的圖象不經(jīng)過(guò)第四象限的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線a,b,c表示交叉的三條公路,現(xiàn)要建一貨物中轉(zhuǎn)站,要求它到這三條公路的距離相等,則可供選擇的站址最多有
A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點(diǎn)沿順時(shí)針?lè)较蛐D(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F.
(1)求證:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,當(dāng)四邊形ADFC是菱形時(shí),求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形的頂點(diǎn)為坐標(biāo)原點(diǎn),頂點(diǎn)在軸正半軸上,頂點(diǎn)、在第一象限,,,點(diǎn)在邊上,將四邊形沿直線翻折,使點(diǎn)和點(diǎn)分別落在這個(gè)坐標(biāo)平面內(nèi)的和處,且,某正比例函數(shù)圖象經(jīng)過(guò),則這個(gè)正比例函數(shù)的解析式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖1:已知直線與軸,軸分別交于,兩點(diǎn),以為直角頂點(diǎn)在第一象限內(nèi)做等腰Rt△.
(1)求,兩點(diǎn)的坐標(biāo);
(2)求所在直線的函數(shù)關(guān)系式;
(3)如圖2,直線交軸于點(diǎn),在直線上取一點(diǎn),使,與軸相交于點(diǎn).
①求證:;
②在軸上是否存在一點(diǎn),使△的面積等于△的面積?若存在,直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)為(3,-2),且與y軸交于(0,).
(1)求函數(shù)的解析式;
(2)若點(diǎn)(p,m)和點(diǎn)(q,n)都在該拋物線上,若p>q>5,判斷m和n的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com