如圖,我們從圖(a)中可以發(fā)現(xiàn)長方形的個數(shù)取決于把AB看作寬,看AD上有多少不同的長,所以長方形的總個數(shù)為1+2+3+4+5 = 15(個),圖(b)與圖(a)不相同,圖(b)與圖(c)也有區(qū)別,但又有相同的地方。
(1)請你仔細觀察,找出其中的規(guī)律,寫出圖(b)與圖(c)中長方形的總個數(shù)。
(2) 如果有類似的一個長方形,其一邊上有n個小格,另一邊上有m個小格(這些小格的長度可以相等,也可以不等),那么你能算出這個長方形中所有長方形(包括正方形)的總個數(shù)嗎?請寫出答案。
(1) 圖(b)中長方形的個數(shù)為45個
圖(c)中長方形的個數(shù)為90個;
(2)總個數(shù)為
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

17、實際問題:某學校共有18個教學班,每班的學生數(shù)都是40人.為了解學生課余時間上網(wǎng)情況,學校打算做一次抽樣調查,如果要確保全校抽取出來的學生中至少有10人在同一班級,那么全校最少需抽取多少名學生?
建立模型:為解決上面的“實際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學模型:
在不透明的口袋中裝有紅,黃,白三種顏色的小球各20個(除顏色外完全相同),現(xiàn)要確保從口袋中隨機摸出的小球至少有10個是同色的,則最少需摸出多少個小球?
為了找到解決問題的辦法,我們可把上述問題簡單化:
(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個是同色的,則最少需摸出多少個小球?
假若從袋中隨機摸出3個小球,它們的顏色可能會出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個小球就可確保至少有2個小球同色,即最少需摸出小球的個數(shù)是:1+3=4(如圖①);
(2)若要確保從口袋中摸出的小球至少有3個是同色的呢?
我們只需在(1)的基礎上,再從袋中摸出3個小球,就可確保至少有3個小球同色,即最少需摸出小球的個數(shù)是:1+3×2=7(如圖②)
(3)若要確保從口袋中摸出的小球至少有4個是同色的呢?
我們只需在(2)的基礎上,再從袋中摸出3個小球,就可確保至少有4個小球同色,即最少需摸出小球的個數(shù)是:1+3×3=10(如圖③):…
(10)若要確保從口袋中摸出的小球至少有10個是同色的呢?
我們只需在(9)的基礎上,再從袋中摸出3個小球,就可確保至少有10個小球同色,即最少需摸出小球的個數(shù)是:1+3×(10-1)=28(如圖⑩)

模型拓展一:在不透明的口袋中裝有紅,黃,白,藍,綠五種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是
6
;
(2)若要確保摸出的小球至少有10個同色,則最少需摸出小球的個數(shù)是
46
;
(3)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是
1+5(n-1)

模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是
1+m

(2)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是
1+m(n-1)

問題解決:(1)請把本題中的“實際問題”轉化為一個從口袋中摸球的數(shù)學模型;
(2)根據(jù)(1)中建立的數(shù)學模型,求出全校最少需抽取多少名學生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

研究課題:螞蟻怎樣爬最近?
研究方法:如圖1,正方體的棱長為5cm,一只螞蟻欲從正方體底面上的點A沿著正方體表面爬到點C1處,要求該螞蟻需要爬行的最短路程的長,可將該正方體右側面展開,由勾股定理得最短路程的長為AC1=
AC2+CC12
=
102+52
=5
5
cm.這里,我們將空間兩點間最短路程問題轉化為平面內兩點間距離最短問題.
研究實踐:(1)如圖2,正四棱柱的底面邊長為5cm,側棱長為6cm,一只螞蟻從正四棱柱底面上的點A沿著棱柱表面爬到C1處,螞蟻需要爬行的最短路程的長為
 

(2)如圖3,圓錐的母線長為4cm,圓錐的側面展開圖如圖4所示,且∠AOA1=120°,一只螞蟻欲從圓錐的底面上的點A出發(fā),沿圓錐側面爬行一周回到點A.求該螞蟻需要爬行的最短路程的長.
(3)如圖5,沒有上蓋的圓柱盒高為10cm,底面圓的周長為32cm,點A距離下底面3cm.一只位于圓柱盒外表面點A處的螞蟻想爬到盒內表面對側中點B處.請求出螞蟻需要爬行的最短路程的長.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:山東省中考真題 題型:解答題

實際問題:
某學校共有18個教學班,每班的學生數(shù)都是40人,為了解學生課余時間上網(wǎng)情況,學校打算做一次抽樣調查,如果要確保全校抽取出來的學生中至少有10人在同一班級,那么全校最少需抽取多少名學生?
建立模型:
為解決上面的“實際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學模型:在不透明的口袋中裝有紅、黃、白三種顏色的小球各20個(除顏色外完全相同),現(xiàn)要確保從口袋中隨機摸出的小球至少有10個是同色的,則最少需摸出多少個小球?
為了找到解決問題的辦法,我們可把上述問題簡單化:
(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個是同色的,則最少需摸出多少個小球?假若從袋中隨機摸出3個小球,它們的顏色可能會出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個小球就可確保至少有2個小球同色,即最少需摸出小球的個數(shù)是:1+3=4(如圖①);
(2)若要確保從口袋中摸出的小球至少有3個是同色的呢?我們只需在(1)的基礎上,再從袋中摸出3個小球,就可確保至少有3個小球同色,即最少需摸出小球的個數(shù)是:1+3×2=7(如圖②)
(3)若要確保從口袋中摸出的小球至少有4個是同色的呢?我們只需在(2)的基礎上,再從袋中摸出3個小球,就可確保至少有4個小球同色,即最少需摸出小球的個數(shù)是:1+3×3=10(如圖③)
...
(10)若要確保從口袋中摸出的小球至少有10個是同色的呢?我們只需在(9)的基礎上,再從袋中摸出3個小球,就可確保至少有10個小球同色,即最少需摸出小球的個數(shù)是:1+3×(10-1)=28(如圖⑩)

模型拓展一:
在不透明的口袋中裝有紅、黃、白、藍、綠五種顏色的小球各20分(除顏色外完全相同),現(xiàn)從袋中隨機摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是____;
(2)若要確保摸出的小球至少有10個同色,則最少需摸出小球的個數(shù)是____;
(3)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是____;
模型拓展二:
在不透明口袋中裝有m種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機摸球:
(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是____;
(2)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是____;
問題解決:
(1)請把本題中的“實際問題”轉化為一個從口袋中摸球的數(shù)學模型;
(2)根據(jù)(1)中建立的數(shù)學模型,求出全校最少需抽取多少名學生。

查看答案和解析>>

科目:初中數(shù)學 來源:鼓樓區(qū)二模 題型:解答題

研究課題:螞蟻怎樣爬最近?
研究方法:如圖1,正方體的棱長為5cm,一只螞蟻欲從正方體底面上的點A沿著正方體表面爬到點C1處,要求該螞蟻需要爬行的最短路程的長,可將該正方體右側面展開,由勾股定理得最短路程的長為AC1=
AC2+CC12
=
102+52
=5
5
cm.這里,我們將空間兩點間最短路程問題轉化為平面內兩點間距離最短問題.
研究實踐:(1)如圖2,正四棱柱的底面邊長為5cm,側棱長為6cm,一只螞蟻從正四棱柱底面上的點A沿著棱柱表面爬到C1處,螞蟻需要爬行的最短路程的長為______.
(2)如圖3,圓錐的母線長為4cm,圓錐的側面展開圖如圖4所示,且∠AOA1=120°,一只螞蟻欲從圓錐的底面上的點A出發(fā),沿圓錐側面爬行一周回到點A.求該螞蟻需要爬行的最短路程的長.
(3)如圖5,沒有上蓋的圓柱盒高為10cm,底面圓的周長為32cm,點A距離下底面3cm.一只位于圓柱盒外表面點A處的螞蟻想爬到盒內表面對側中點B處.請求出螞蟻需要爬行的最短路程的長.
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案