已知拋物線C1:y=-x2+2mx+1(m為常數(shù),且m≠0)的頂點(diǎn)為A,與y軸交于點(diǎn)C;拋物線C2與拋物線C1關(guān)于y軸對(duì)稱,其頂點(diǎn)為B.若點(diǎn)P是拋物線C1上的點(diǎn),使得以A、B、C、P為頂點(diǎn)的四邊形為菱形,則m的值為
±
3
±
3
分析:拋物線C1、C2關(guān)于y軸對(duì)稱,那么它們的頂點(diǎn)A、B也關(guān)于y軸對(duì)稱,所以AB∥x軸;若以A、B、C、P為頂點(diǎn)的四邊形為菱形,那么CP也必須與x軸平行,即點(diǎn)C、P的縱坐標(biāo)相同,代入拋物線C1的解析式中,就能確定點(diǎn)P的坐標(biāo),此時(shí)能發(fā)現(xiàn)AB=CP,即四邊形APCB中,AB、CP平行且相等,即該四邊形APCB是平行四邊形,只要再滿足AP=CP(即一組鄰邊相等),就能判定該四邊形是菱形,因此先用m表達(dá)出AP、CP的長,再列等式求出m的值.
解答:解:由拋物線C1:y=-x2+2mx+1知,點(diǎn)A(m,m2+1)、C(0,1);
∵拋物線C1、C2關(guān)于y軸對(duì)稱,
∴點(diǎn)A、B關(guān)于y軸對(duì)稱,則AB∥x軸,且B(-m,m2+1),AB=|-2m|;
若以A、B、C、P為頂點(diǎn)的四邊形為菱形,則  AB∥CP;
在拋物線C1:y=-x2+2mx+1中,當(dāng)y=1時(shí),-x2+2mx+1=1,解得 x1=0、x2=2m,
∴點(diǎn)P(2m,m2+1);
∴AB=CP=|2m|,又AB∥CP,則四邊形APCB是平行四邊形;
若四邊形APCB是菱形,那么必須滿足AP=CP,即:
(2m)2=(m-0)2+(m2+1-1)2,即:m2=3,
解得 m=±
3

故答案為:±
3
點(diǎn)評(píng):此題主要考查的是菱形和二次函數(shù)的綜合題,把握好菱形的特點(diǎn)以及軸對(duì)稱圖形的性質(zhì)即可正確解題.此題的解法較多,若以A、P、C、B為頂點(diǎn)的四邊形是菱形,那么△ABC應(yīng)該是等邊三角形,根據(jù)這個(gè)思路來解題也是比較簡便的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線C1與坐標(biāo)軸的交點(diǎn)依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關(guān)于原點(diǎn)對(duì)稱的拋物線C2的解析式;
(2)設(shè)拋物線C1的頂點(diǎn)為M,拋物線C2與x軸分別交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),頂點(diǎn)為N,四邊形MDNA的面積為S.若點(diǎn)A,點(diǎn)D同時(shí)以每秒1個(gè)單位的速度沿水平方向分別向右、向左運(yùn)動(dòng);與此同時(shí),點(diǎn)M,點(diǎn)N同時(shí)以每秒2個(gè)單位的速度沿堅(jiān)直方向分別向下、向上運(yùn)動(dòng),直到點(diǎn)A與點(diǎn)D重合為止.求出四邊形MDNA的面積S與運(yùn)動(dòng)時(shí)間t之間的關(guān)系式,并寫出自變量t的取值范圍;
(3)當(dāng)t為何值時(shí),四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運(yùn)動(dòng)過程中,四邊形MDNA能否形成矩形?若能,求出此時(shí)t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y=-x2+2mx+1(m為常數(shù),且m≠0)的頂點(diǎn)為A,與y軸交于點(diǎn)C;拋物線C2與拋物線C1關(guān)于y軸對(duì)稱,其頂點(diǎn)為B.若點(diǎn)P是拋物線C1上的點(diǎn),使得以A、B、C、P為頂點(diǎn)的四邊形為菱形,則m為(  )
A、±
3
B、
3
C、±
2
D、
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C1:y=a(x-2)2-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)A的橫坐標(biāo)是-1.
(1)求P點(diǎn)坐標(biāo)及a的值;
(2)如圖(1),拋物線C2與拋物線C1關(guān)于x軸對(duì)稱,將拋物線C2向左平移,平移后的拋物線記為C3,C3的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)A成中心對(duì)稱時(shí),求C3的解析式y(tǒng)=a(x-h)2+k;
(3)如圖(2),點(diǎn)Q是x軸負(fù)半軸上一動(dòng)點(diǎn),將拋物線C1繞點(diǎn)Q旋轉(zhuǎn)180°后得到拋物線C4.拋物線C4的頂點(diǎn)為N,與x軸相交于E、F兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),當(dāng)以點(diǎn)P、N、E為頂點(diǎn)的三角形是直角三角形時(shí),求頂點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•房山區(qū)一模)已知拋物線C1:y=ax2+4ax+4a-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)B的橫坐標(biāo)是1.
(1)求拋物線的解析式和頂點(diǎn)P的坐標(biāo);
(2)將拋物線沿x軸翻折,再向右平移,平移后的拋物線C2的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)B成中心對(duì)稱時(shí),求平移后的拋物線C2的解析式;
(3)直線y=-
35
x+m
與拋物線C1、C2的對(duì)稱軸分別交于點(diǎn)E、F,設(shè)由點(diǎn)E、P、F、M構(gòu)成的四邊形的面積為s,試用含m的代數(shù)式表示s.

查看答案和解析>>

同步練習(xí)冊(cè)答案