【題目】某種植戶計(jì)劃將一片荒山改良后種植沃柑,經(jīng)市場(chǎng)調(diào)查得知,當(dāng)種植沃柑的面積x不超過(guò)15畝時(shí),每畝可獲得利潤(rùn)y=1900元;超過(guò)15畝時(shí),每畝獲得利潤(rùn)y(元)與種植面積x(畝)之間的函數(shù)關(guān)系:y=kx+b,并且當(dāng)x=20時(shí),y=1800;當(dāng)x=25時(shí),y=1700.
(1)請(qǐng)求出y與x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)設(shè)種植戶種植x畝沃柑所獲得的總利潤(rùn)為w元,由于受條件限制,種植沃柑面積x不超過(guò)50畝,求該種植戶種植多少畝獲得的總利潤(rùn)最大,并求總利潤(rùn)w(元)的最大值.
【答案】(1)y=﹣20x+2200(15<x≤110);(2)當(dāng)種植50畝時(shí)獲利最大,總利潤(rùn)的最大值為60000元
【解析】
(1)根據(jù)題意設(shè)y=kx+b,再運(yùn)用待定系數(shù)法求解可得;
(2)根據(jù)總利潤(rùn)=每畝利潤(rùn)×畝數(shù),分0<x≤15和15<x≤110兩種情況分別求解可得.
解:(1)y=kx+b,
將x=20、y=1800和x=25、y=1700代入得:
解得:
∴y=﹣20x+2200
∵-20x+2200≥0,
解得:x≤110,
∴自變量的取值范圍是:15<x≤110;
(2)當(dāng)0<x≤15時(shí),W=1900x,
∴當(dāng)x=15時(shí),W最大=28500(元);
當(dāng)15<x≤110時(shí),
W=(﹣20x+2200)x=﹣20x2+2200x=﹣20(x﹣55)2+60500
∵x≤50
∴當(dāng)x=50時(shí),W最大=60000(元);
所以,當(dāng)種植50畝時(shí)獲利最大,總利潤(rùn)的最大值為60000元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)為C,已知﹣2≤c≤﹣1,頂點(diǎn)坐標(biāo)為(1,n),則下列結(jié)論正確的是( 。
A.a+b>0
B.
C.對(duì)于任意實(shí)數(shù)m,不等式a+b>am2+bm恒成立
D.關(guān)于x的方程ax2+bx+c=n+1沒(méi)有實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,邊上的高,點(diǎn)在上,且,點(diǎn)在上,過(guò)點(diǎn)作交于點(diǎn),當(dāng)點(diǎn)在高上移動(dòng)時(shí),點(diǎn)可左右移動(dòng)的最大距離是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2k+1)x+k2=0①有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)設(shè)方程①的兩個(gè)實(shí)數(shù)根分別為x1,x2,當(dāng)k=1時(shí),求x12+x22的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校鼓勵(lì)師生利用課余時(shí)間廣泛閱讀,為了解學(xué)生課外閱讀情況,抽樣調(diào)查了部分學(xué)生每周用于課外閱讀的時(shí)間,過(guò)程如下:
數(shù)據(jù)收集:從全校隨機(jī)抽取20名學(xué)生,進(jìn)行了每周用于課外閱讀時(shí)間的調(diào)查,數(shù)據(jù)如下單位:min)
30 | 60 | 81 | 50 | 40 | 110 | 130 | 146 | 90 | 100 |
60 | 81 | 120 | 140 | 70 | 81 | 10 | 20 | 100 | 81 |
分段整理樣本數(shù)據(jù):
課外閱讀時(shí)間 | ||||
等級(jí) | D | C | B | A |
人數(shù) | 3 | ① | 8 | ② |
統(tǒng)計(jì)量:
平均數(shù) | 中位數(shù) | 眾數(shù) |
80 | ③ | ④ |
得出結(jié)論:
(1)填寫表格中的數(shù)據(jù):
(2)如果該校現(xiàn)有學(xué)生400人,估計(jì)等級(jí)為“B”的學(xué)生有多少名?
(3)假設(shè)平均閱讀一本課外書(shū)的時(shí)間為160分鐘,請(qǐng)你選擇樣本中的一種統(tǒng)計(jì)量估計(jì)該校學(xué)生每人一年(按52周計(jì)算)平均閱讀多少本課外書(shū)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三位女同學(xué)競(jìng)選學(xué)校即將組織的“中國(guó)夢(mèng),我的夢(mèng)”文藝演出女主持人,它們的筆試成績(jī)和口試成績(jī)、形象得分,分別如下:
筆試 | |||
口試 | |||
形象 | |||
平均分 |
(1)① ;
②在表格中的個(gè)數(shù)的中位數(shù)是 ,眾數(shù)是
(2)經(jīng)學(xué)校研究決定,在兩位同學(xué)中選一位.評(píng)比方法:按筆試成績(jī):口試成績(jī):形象得分進(jìn)行計(jì)算,得分最高的同學(xué)為本次文藝演出的女主持人.請(qǐng)你算一算哪位同學(xué)最后被選為本次文藝演出的女主持人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】疫情期間,口罩供不應(yīng)求.某口罩企業(yè)為指導(dǎo)生產(chǎn),在二月份期間對(duì)甲乙丙丁四條生產(chǎn)線日產(chǎn)量進(jìn)行調(diào)研,根據(jù)調(diào)研數(shù)據(jù),繪制出如下兩幅不完整的統(tǒng)計(jì)圖.觀察統(tǒng)計(jì)圖,請(qǐng)解答以下問(wèn)題:
(1)求二月份該企業(yè)口罩單日產(chǎn)量(二月份計(jì)天).
(2)求乙條生產(chǎn)線單日產(chǎn)量是多少,并補(bǔ)全頻數(shù)分布直方圖.
(3)為滿足市場(chǎng)需求,該公司改進(jìn)生產(chǎn)技術(shù),使得口罩產(chǎn)量在二月的基礎(chǔ)上逐月提高,已知月份口罩產(chǎn)量為萬(wàn)只,若三月份和四月份口罩月產(chǎn)量平均增長(zhǎng)率相同,求每月的平均增長(zhǎng)率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)H為邊BC的中點(diǎn),點(diǎn)G為線段DH上一點(diǎn),且∠BGC=90°,延長(zhǎng)BG交CD于點(diǎn)E,延長(zhǎng)CG交AD于點(diǎn)F,當(dāng)CD=4,DE=1時(shí),則DF的長(zhǎng)為( )
A.2B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一個(gè)閉合時(shí)的夾子,圖2是該夾子的主視示意圖,夾子兩邊為AC,BD(點(diǎn)A與點(diǎn)B重合),點(diǎn)O是夾子轉(zhuǎn)軸位置,OE⊥AC于點(diǎn)E,OF⊥BD于點(diǎn)F,OE=OF=1cm,AC=BD=6cm, CE=DF, CE:AE=2:3.按圖示方式用手指按夾子,夾子兩邊繞點(diǎn)O轉(zhuǎn)動(dòng).
(1)當(dāng)E,F兩點(diǎn)的距離最大值時(shí),以點(diǎn)A,B,C,D為頂點(diǎn)的四邊形的周長(zhǎng)是_____ cm.
(2)當(dāng)夾子的開(kāi)口最大(點(diǎn)C與點(diǎn)D重合)時(shí),A,B兩點(diǎn)的距離為_____cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com