【題目】如圖,在△ABC中,∠ACB=90°,點D,E在AB上,且AF垂直平分CD,BG垂直平分CE.(1)求∠ECD的度數(shù);(2)若∠ACB為α,則∠ECD的度數(shù)能否用含α的式子來表示.
【答案】見解析
【解析】試題分析:
(1)由AF垂直平分CD可得AC=AD,再由等腰三角形的“三線合一”可得∠FAB=∠CAB,同理可得∠GBA=∠CBA;如圖,設AF、BG相交于點O,則∠GOF=∠AOB=180°-∠FAB-∠GBA=180°-(180°-∠ACB)=135°,由此在四邊形GOFC中可得∠ECD=360°-∠CGO-∠CFO-∠GOF=360°-90°-90°-∠GOF=180°-135°=45°.
(2)思路同(1)只需把∠ACB=90°換成∠ACB= 可解得∠DCE=90°- .
試題解析:
(1)如圖,設AF、BG相交于點O,連接CO,
∵AF垂直平分CD,
∴AC=AD,∠CFO=90°,∴∠FAB=∠CAB.
同理可得:∠CGO=90°,∠GBA=∠CBA.
∴∠GOF=∠AOB=180°-∠FAB-∠GBA=180°-(180°-∠ACB)=90°+∠ACB=135°,
∵四邊形GOFC的內角和為360°,
∴∠ECD=360°-∠CGO-∠CFO-∠GOF
=360°-90°-90°-∠GOF
=180°-135°
=45°.
(2)同(1)可得∠GOF=90°+∠ACB=90°+ ,∠CFO=90°,∠CGO=90°,
∵四邊形GOFC的內角和為360°,
∴∠ECD=360°-∠CGO-∠CFO-∠GOF
=360°-90°-90°-∠GOF
=180°-(90°+ )
=90°- .
科目:初中數(shù)學 來源: 題型:
【題目】某高校共有5個大餐廳和2個小餐廳。經過測試:同時開放1個大餐廳和2個小餐廳,可供1680名學生就餐;同時開放2個大餐廳和1個小餐廳,可供2280名學生就餐。
(1)1個大餐廳和1個小餐廳分別可供多少名學生就餐?
(2)若7個餐廳同時開放,能否供全校的5300名學生就餐?請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,正方形A1B1C1O1、A2B2C2C1、…、AnBnCnCn﹣1按如圖所示的方式放置,其中點A1、A2、A3、…、An均在一次函數(shù)y=kx+b的圖象上,點C1、C2、C3、…、Cn均在x軸上.若點B1的坐標為(1,1),點B2的坐標為(3,2),則點An的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于不等式組 下列說法正確的是( 。
A. 此不等式組無解 B. 此不等式組有7個整數(shù)解
C. 此不等式組的負整數(shù)解是﹣3,﹣2,﹣1 D. 此不等式組的解集是<x≤2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各式,屬于二元一次方程的個數(shù)有( )
①xy+2x-y=7; ②4x+1=x-y; ③+y=5; ④x=y; ⑤x2-y2=2
⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+x
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】魯班家裝公司為芙蓉小區(qū)做家裝設計,調查員設計了如下問卷,對家裝風格進行專項調查.
通過隨機抽樣調查50家客戶,得到如下數(shù)據(jù):
A B B A B B A C A C A B A D A A B
B A A D B A B A C A C B A A D A A
A B B D A A A B A C A B D A B A
(1)請你補全下面的數(shù)據(jù)統(tǒng)計表: 家裝風格統(tǒng)計表
裝修風格 | 劃記 | 戶數(shù) | 百分比 |
A中式 | 正正正正正 | 25 | 50% |
B歐式 | |||
C韓式 | 5 | 10% | |
D其他 | 正 | 10% | |
合計 | 50 | 100% |
(2)請用扇形統(tǒng)計圖描述(1)表中的統(tǒng)計數(shù)據(jù);(注:請標明各部分的圓心角度數(shù))
(3)如果公司準備招聘10名裝修設計師,你認為各種裝修風格的設計師應分別招多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(題文)(1)閱讀理解:
如圖1,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,連接BE(或將△ACD繞著點D逆時針旋轉180°得到△EBD,把AB,AC,2AD集中在△ABE中.利用三角形三邊的關系即可判斷中線AD的取值范圍是_________;
(2)問題解決:
如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證BE+CF>EF.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com