【題目】如圖,△ABC中,∠A=45°,過點C作CD⊥AB于點D,E為AC的中點,連接EB,交CD于點F.

(1)如圖1,若∠EBA=30°,EB=2,求AE的長:

(2)如圖2,若F恰好為EB的中點,求證:CF=DF+AD.

【答案】(1)AE=;(2)證明見解析.

【解析】

(1)先過E作垂線,構(gòu)建直角三角形求AE(2)FEB的中點,據(jù)此找到邊與邊的關(guān)系,利用等量代換思想證明出CF=DF+AD

(1)過E作EG⊥AB于G,

∴∠AGE=∠BGE=90°,

∵∠EBA=30°,EB=2,

∴EG=BE=1,

∵∠A=45°,

∴AG=EG=1,

∴AE=

(2)證明:過E作EG⊥AB于G,

∵CD⊥AB,

∴EG∥CD,

∵E為AC的中點,

∴EG=CD,

∵F恰好為EB的中點,

∴DF=EG=CD,

∴CF=CD,

∵∠A=45°,

∴CD=AD,

∴CF=AD,

∵DF+AD=CD+AD=AD+AD=AD,

∴CF=DF+AD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,王華同學(xué)在晚上由路燈AC走向路燈BD,當(dāng)他走到點P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當(dāng)他向前再步行12m到達Q點時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部.已知王華同學(xué)的身高是1.6m,兩個路燈的高度都是9.6m.

(1)求兩個路燈之間的距離;

(2)當(dāng)王華同學(xué)走到路燈BD處時,他在路燈AC下的影子長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在O中,直徑AB垂直弦CD于E,過點A作∠DAF=∠DAB,過點D作AF的垂線,垂足為F,交AB的延長線于點P,連接CO并延長交O于點G,連接EG.

(1)求證:DF是O的切線;

(2)若AD=DP,OB=3,求的長度;

(3)若DE=4,AE=8,求線段EG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題錯誤的是( )

A. 如果yx成反比例關(guān)系,那么x也與y成反比例關(guān)系

B. 如果yz成反比例關(guān)系,zx成正比例關(guān)系,且x≠0,那么yx成反比例關(guān)系

C. 如果yz成正比例關(guān)系,zx成反比例關(guān)系,且x≠0,那么yx成反比例關(guān)系

D. 如果yz成反比例關(guān)系,zx成反比例關(guān)系,那么yx成反比例關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動點P從點A開始沿邊AB向終點B以每秒2個單位長度的速度移動,動點Q從點B開始沿邊BC以每秒4個單位長度的速度向終點C移動,如果點P、Q分別從點A、B同時出發(fā),那么△PBQ的面積S隨出發(fā)時間t(s)如何變化?寫出函數(shù)關(guān)系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+px+q的對稱軸為直線x=﹣2,過其頂點M的一條直線y=kx+b與該拋物線的另一個交點為N(﹣1,﹣1).若要在y軸上找一點P,使得PM+PN最小,則點P的坐標(biāo)為(  ).

A. (0,﹣2) B. (0,﹣ C. (0,﹣ D. (0,﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在斜坡的頂部有一鐵塔AB,BCD的中點,CD是水平的,在陽光的照射下,塔影DE留在坡面上.已知鐵塔底座寬CD=12 m,塔影長DE=18 m,小明和小華的身高都是1.6m,同一時刻,小明站在點E處,影子在坡面上,小華站在平地上,影子也在平地上,兩人的影長分別為2m1m,那么塔高AB為( 。

A. 24m B. 22m C. 20m D. 18m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=x2+(a﹣2)x+3的圖象與一次函數(shù)y=x(1≤x≤2)的圖象有且僅有一個交點,則實數(shù)a的取值范圍是( 。

A. a=3±2 B. ﹣1≤a<2

C. a=3或﹣≤a<2 D. a=3﹣2或﹣1≤a<﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,點分別在邊上,點在對角線上,,.

求證:四邊形是平行四邊形.

,,,求的長.

查看答案和解析>>

同步練習(xí)冊答案