【題目】如圖所示,已知二次函數(shù)yax2+bx+c的圖象與x軸交于A、B兩點,與y軸交于點C,對稱軸為直線x1.直線y=﹣x+c與拋物線yax2+bx+c交于CD兩點,則下列結(jié)論:

abc0

ab+c0;

③2a+b+c0;

x(ax+b)a+b;

其中正確的有_____

【答案】②③④

【解析】

根據(jù)二次函數(shù)系數(shù)與圖像的關(guān)系即可求解.

∵對稱軸x1

b=﹣2a,

由圖可知c0,a0,

abc0,不正確;

x=﹣1時,y0,

ab+c0;正確;

③2a+b+c2a2a+cc0;正確;

x1時,函數(shù)y有最大值a+b+c,

x(ax+b)+ca+b+c,

x(ax+b)a+b;正確;

故答案為②③④;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,直線ABykx1分別交x軸、y軸于點A、B,直線CDyx+2分別交x軸、y軸于點D、C,且直線AB、CD交于點EE的橫坐標為﹣6

(1)如圖①,求直線AB的解析式;

(2)如圖②,點P為直線BA第一象限上一點,過Py軸的平行線交直線CDG,交x軸于F,在線段PG取點N,在線段AF上取點Q,使GNQF,在DG上取點M,連接MN、QN,若∠GMN=∠QNF,求的值;

(3)(2)的條件下,點E關(guān)于x軸對稱點為T,連接MPTQ,若MPTQ,且GNNP43,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,∠C=30°,以邊上AC上一點O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過邊BC的中點D,并與邊AC相交于另一點F.

(1)求證:BD是⊙O的切線.

(2)若AB=,E是半圓上一動點,連接AE,AD,DE.

填空:

①當的長度是____________時,四邊形ABDE是菱形;

②當的長度是____________時,△ADE是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC為等腰直角三角形,∠ACB90°,ACBC,點DE分別是ACAB上的點,CEBD,垂足為F

1

①求證:DAC的中點;②計算的值.

2)若,如圖2,則   (直接寫出結(jié)果,用k的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,PCD邊上一點(DP<CP),APB=90°.將ADP沿AP翻折得到AD′P,PD′的延長線交邊AB于點M,過點BBNMPDC于點N.

(1)求證:AD2=DPPC;

(2)請判斷四邊形PMBN的形狀,并說明理由;

(3)如圖2,連接AC,分別交PM,PB于點E,F(xiàn).若=,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,矩形OABC的頂點Ax軸上,頂點Cy軸上,DBC的中點,過點D的反比例函數(shù)圖象交ABE點,連接DE.若OD5,tanCOD

(1)求過點D的反比例函數(shù)的解析式;

(2)求△DBE的面積;

(3)x軸上是否存在點P使△OPD為直角三角形?若存在,請直接寫出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中考將近,同學(xué)們需要花更多的時間來進行自我反思和總結(jié),消化白天的學(xué)習(xí)內(nèi)容,提高學(xué)習(xí)效率.因此,每個班都在積極地進行自我調(diào)整.我校班和班的同學(xué)也積極響應(yīng)號召,調(diào)查了本班的自習(xí)情況以供老師參考.

班同學(xué)在班級抽樣調(diào)查中,調(diào)查了十名同學(xué)的學(xué)習(xí)情況,將這十名同學(xué)在一周內(nèi)每天用于自主復(fù)習(xí)的總時間四舍五入后,分別記錄如下:(單位:分)

班的同學(xué)采取的普查方式,讓每位同學(xué)自己寫出平均每天的自主復(fù)習(xí)時間,將數(shù)據(jù)收集整理后得到以下數(shù)據(jù).

平均數(shù)

中位數(shù)

眾數(shù)

極差

方差

班的同學(xué)還將自主復(fù)習(xí)時間分為四大類:第一類為時間小于分鐘以下,第二類為時間大于或等于分鐘且小于分鐘,第三類為時間大于或等于分鐘且小于分鐘,第四類為時間大于或等于分鐘,并得到如下的扇形圖.

1)在扇形圖中,第一類所對的圓心角度數(shù) .

2)寫出班被調(diào)查同學(xué)的以下特征數(shù).

平均數(shù)

中位數(shù)

眾數(shù)

極差

方差

3)從上面的數(shù)據(jù),我們可以得到 班的自主復(fù)習(xí)情況要好一些,其理由為(至少兩條):

.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南京市某花卉種植基地欲購進甲、乙兩種蘭花進行培育,每株甲種蘭花的成本比每株乙種蘭花的成本多100元,且用1200元購進的甲種蘭花與用900元購進的乙種蘭花數(shù)量相同.

1)求甲、乙兩種蘭花每株成本分別為多少元?

2)該種植基地決定在成本不超過30000元的前提下培育甲、乙兩種蘭花,若培育乙種蘭花的株數(shù)比甲種蘭花的3倍還多10株,求最多購進甲種蘭花多少株?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)實社會中,塑料袋仍然是白色污染的一部分,為了解塑料袋的使用情況,某校八年級環(huán)保小組隨機抽取幸福小區(qū)”40戶居民家庭,記錄了這些家庭某個月丟棄塑料袋的數(shù)量(單位:個)如下:

29 39 35 39 39 27 33 35 31 31

32 32 34 31 33 39 38 40 38 42

31 31 38 31 39 27 33 35 40 38

29 39 35 33 39 39 38 42 37 32

請根據(jù)上述數(shù)據(jù),解答以下問題:

1)若數(shù)據(jù)為x,按組距為5”列出了如下的頻數(shù)分布表,請將表中空缺的部分補充完整,并補全頻數(shù)分布直方圖;

分組

頻數(shù)

A25≤x30

4

B30≤x35

14

C35≤x40

D40≤x45

4

合計

40

2)根據(jù)(1)中的直方圖可以看出,這40戶居民家庭這個月丟棄塑料袋的個數(shù)在   組的家庭最多;(填分組序號)

3)根據(jù)頻數(shù)分布表,畫出了如圖所示的扇形統(tǒng)計圖,請求出C組對應(yīng)的扇形圓心角的度數(shù);

4)若該小區(qū)共有1000戶居民家庭,請你估計每月丟棄的塑料袋數(shù)量不小于30個的家庭戶數(shù).

查看答案和解析>>

同步練習(xí)冊答案