【題目】計算:(1 ;(2 ;(3; 4.

【答案】(1)(2)3a2a2;(3)1;(4)9x26xyy2z2

【解析】

(1)運用積的乘方及同底數(shù)冪的除法法則計算即可.

(2)直接去括號求得.

(3)可以把20202018化為(20191)(20191),然后利用平方差公式化簡即可求解.

(4)利用平方差公式求解即可.

(1)(3a2b)2÷(-15ab2)=9a4b2÷(-15ab2)=.

(2)(a+1)(3a2)3a22a3a 23a2a2

(3)201922020201820192(20191)(20191)20192(201921)1

(4)(3x+y+z)(3x+yz)(3x y)2z29x2 6xy y2 z2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】AOB中,AB兩點的坐標分別為(2,4)、(5,2).

1)將△AOB向左平移3個單位長度,向下平移4個單位長度,得到對應的△A1O1B1,畫出△A1O1B1并寫出點A1、O1、B1的坐標.

2)求出△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在讀書月活動中,學校準備購買一批課外讀物.為使課外讀物滿足同學們的需求,學校就“我最喜愛的課外讀物”從文學、藝術(shù)、科普和其他四個類別進行了抽樣調(diào)查(每位同學只選一類),如圖是根

據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次調(diào)查中,一共調(diào)查了   名同學;

(2)條形統(tǒng)計圖中,m=   ,n=   ;

(3)扇形統(tǒng)計圖中,藝術(shù)類讀物所在扇形的圓心角是   度;

(4)學校計劃購買課外讀物6000冊,請根據(jù)樣本數(shù)據(jù),估計學校購買其他類讀物多少冊比較合理?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某圖書借閱室提供兩種租書方式:一種是零星租書,每冊收費 1 元;另一種是會員租書,會員卡費用為每季度10 元,租書費每冊 0.5 元.小亮經(jīng)常來租書,若每季度租書數(shù)量為 x 冊.

1)寫出零星租書方式每季度應付金額 y1(元)與租書數(shù)量 x(冊)之間的函數(shù)關(guān)系式;

2)寫出會員卡租書方式每季度應付金額 y2(元)與租書數(shù)量 x(冊)之間的函數(shù)關(guān)系式;

3)請分析小亮選取哪種租書方式更合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

數(shù)學課上,老師讓同學們利用三角形紙片進行操作活動,探究有關(guān)線段之間的關(guān)系.

問題情境:

如圖1,三角形紙片ABC中,∠ACB90°ACBC.將點C放在直線l上,點A,B位于直線l的同側(cè),過點AADl于點D.

初步探究:

(1)在圖1的直線l上取點E,使BEBC,得到圖2.猜想線段CEAD的數(shù)量關(guān)系,并說明理由;

變式拓展:

(2)小穎又拿了一張三角形紙片MPN繼續(xù)進行拼圖操作,其中∠MPN90°,MPNP.小穎在圖 1 的基礎(chǔ)上,將三角形紙片MPN的頂點P放在直線l上,點M與點B重合,過點NNHl于點 H.

請從下面 A,B 兩題中任選一題作答,我選擇_____.

A.如圖3,當點N與點M在直線l的異側(cè)時,探究此時線段CP,ADNH之間的數(shù)量關(guān)系,并說明理由.

B.如圖4,當點N與點M在直線l的同側(cè),且點P在線段CD的中點時,探究此時線段CDAD,NH之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,邊長為的等邊三角形的頂點分別在邊上.

1)判斷的形狀,并說明理由;

2)求的長;

3)試求正方形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電腦公司現(xiàn)有A、B、C三種型號的甲品牌電腦和DE兩種型號的乙品牌電腦.希望中學要從甲、乙兩種品牌電腦中各選購一種型號的電腦.

1)寫出所有選購方案(利用樹狀圖或列表方法表示);

2)如果(1)中各種選購方案被選中的可能性相同,那么A型號電腦被選中的概率是多少?

3)現(xiàn)知希望中學購買甲、乙兩種品牌電腦共36臺(價格如圖所示),恰好用了10萬元人民幣,其中甲品牌電腦為A型號電腦,求購買的A型號電腦有幾臺.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F分別在AD,BC上,將ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結(jié)論:①四邊形CFHE是菱形;②EC平分∠DCH;③線段BF的取值范圍為3BF4;④當點H與點A重合時,EF=.其中正確的結(jié)論是()

A.①②③④B.①④C.①②④D.①③④

查看答案和解析>>

同步練習冊答案