若點(diǎn)P是線段AB的黃金分割點(diǎn),且AP>BP,則下列結(jié)論正確的是


  1. A.
    AP2=BP•AB
  2. B.
    BP2=AP•AB
  3. C.
    AB2=AP•AB
  4. D.
    以上都不對(duì)
A
分析:由AP>BP知PA是較長(zhǎng)線段,根據(jù)黃金分割點(diǎn)的定義,則AP2=BP•AB.
解答:由于P為線段AB的黃金分割點(diǎn),且AP>BP,
∴AP2=BP•AB.
故選A.
點(diǎn)評(píng):理解黃金分割點(diǎn)的概念,找出黃金分割中成比例的對(duì)應(yīng)線段即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,點(diǎn)C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.
(1)研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn)(如圖2),則直線CD是△ABC的黃金分割線.你認(rèn)為對(duì)嗎?為什么?
(2)請(qǐng)你說(shuō)明:三角形的中線是否也是該三角形的黃金分割線?
(3)研究小組在進(jìn)一步探究中發(fā)現(xiàn):過(guò)點(diǎn)C任作一條直線交AB于點(diǎn)E,再過(guò)點(diǎn)D作直線DF∥CE,交AC于點(diǎn)F,連接EF(如圖3),則直線EF也是△ABC的黃金分割線.請(qǐng)你說(shuō)明理由.
(4)如圖4,點(diǎn)E是平行四邊形ABCD的邊AB的黃金分割點(diǎn),過(guò)點(diǎn)E作EF∥AD,交DC于點(diǎn)F,顯然直線EF是平行四邊形ABCD的黃金分割線.請(qǐng)你畫(huà)一條平行四邊形ABCD的黃金分割線,使它不經(jīng)過(guò)平行四邊形ABCD各邊黃金分割點(diǎn).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1所示,點(diǎn)C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果
s1
s
=
s2
s1
,那么稱直線l為該圖形的黃金分割線.
(1)研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn),如圖2所示,則精英家教網(wǎng)直線CD是△ABC的黃金分割線,你認(rèn)為對(duì)嗎?說(shuō)說(shuō)你的理由;
(2)請(qǐng)你說(shuō)明:三角形的中線是否是該三角形的黃金分割線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•黃石)如圖1,點(diǎn)C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某數(shù)學(xué)興趣小組在進(jìn)行課題研究時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.
(1)如圖2,在△ABC中,∠A=36°,AB=AC,∠C的平分線交AB于點(diǎn)D,請(qǐng)問(wèn)點(diǎn)D是否是AB邊上的黃金分割點(diǎn),并證明你的結(jié)論;
(2)若△ABC在(1)的條件下,如圖3,請(qǐng)問(wèn)直線CD是不是△ABC的黃金分割線,并證明你的結(jié)論;
(3)如圖4,在直角梯形ABCD中,∠D=∠C=90°,對(duì)角線AC、BD交于點(diǎn)F,延長(zhǎng)AB、DC交于點(diǎn)E,連接EF交梯形上、下底于G、H兩點(diǎn),請(qǐng)問(wèn)直線GH是不是直角梯形ABCD的黃金分割線,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,點(diǎn)C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.

(1)研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn)(如圖2),則直線CD是△ABC的黃金分割線.你認(rèn)為對(duì)嗎?為什么?
(2)研究小組在進(jìn)一步探究中發(fā)現(xiàn):過(guò)點(diǎn)C任作一條直線交AB于點(diǎn)E,再過(guò)點(diǎn)D作直線DF∥CE,交AC于點(diǎn)F,連接EF(如圖3),則直線EF也是△ABC的黃金分割線.請(qǐng)你說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分10分)如圖1,點(diǎn)C將線段AB分成兩部分,如果AB : AC=AC : BC,那么稱點(diǎn)C為線段的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1: S2,如果S : S1= S1: S2,,那么稱直線為該圖形的黃金分割線.

(1)研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn)(如圖2),則直線CD是△ABC的黃金分割線.你認(rèn)為對(duì)嗎?為什么?

(2)請(qǐng)你說(shuō)明:三角形的中線是否也是該三角形的黃金分割線?

(3)研究小組探究發(fā)現(xiàn):在(1)中,過(guò)點(diǎn)C任作AE交AB于E,再過(guò)點(diǎn)D作,交 AC于點(diǎn)F,連接EF(如圖3),則直線EF是△ABC的黃金分割線.請(qǐng)說(shuō)明理由.

(4)如圖4,點(diǎn)E是ABCD的邊AB的黃金分割點(diǎn),過(guò)點(diǎn)E作,交DC于點(diǎn)F,顯然直線EF是ABCD的黃金分割線.請(qǐng)你再畫(huà)一條ABCD的黃金分割線,使它不經(jīng)過(guò)ABCD各邊黃金分割點(diǎn)(保留必要的輔助線).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案