【題目】如圖,四邊形內(nèi)接于,的直徑,平分,過(guò)點(diǎn)作點(diǎn).

1)求證:的切線;

2)若,,求的長(zhǎng).

【答案】(1)詳見(jiàn)解析;(2)

【解析】

1)如圖1(見(jiàn)解析),連接OCOD,先由圓周角定理得,從而可得,再根據(jù)圓周角定理和圓心角定理可得,由此可得垂直平分,即有,從而可證,最后根據(jù)圓的切線的判定定理可證;

2)方法一:如圖2(見(jiàn)解析),延長(zhǎng)的延長(zhǎng)線于點(diǎn),先利用三角形全等求出AFCF的長(zhǎng),再通過(guò)證出兩個(gè)三角形相似即可得;方法二:如圖1(見(jiàn)解析),先利用求出CEAE的長(zhǎng),再利用勾股定理求出DE的長(zhǎng),最后根據(jù)線段的和差即可得.

1)如圖1,連接

的直徑

點(diǎn)

平分,即

(圓周角定理)

(圓心角定理)

垂直平分,即有

CE的切線;

2)∵AB的直徑

由題(1)已證

方法一: 如圖2,延長(zhǎng)的延長(zhǎng)線于點(diǎn)

,(圓內(nèi)接四邊形的對(duì)角互補(bǔ))

;

方法二:如圖1,

中,由勾股定理得:

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是O的直徑,點(diǎn)C為O上一點(diǎn),CN為O的切線,OMAB于點(diǎn)O,分別交AC、CN于D、M兩點(diǎn).

(1)求證:MD=MC;

(2)若O的半徑為5,AC=4,求MC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面的坡度為,文化墻在天橋底部正前方8米處(的長(zhǎng)),為了方便行人推車過(guò)天橋,有關(guān)部門決定降低坡度,使新坡面的坡度為(參考數(shù)據(jù):,)

(1)若新坡面坡角為,求坡角度數(shù);

(2)有關(guān)部門規(guī)定,文化墻距天橋底部小于3米時(shí)應(yīng)拆除,天橋改造后,該文化墻是否需要拆除?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某養(yǎng)殖場(chǎng)計(jì)劃用96米的竹籬笆圍成如圖所示的①、②、③三個(gè)養(yǎng)殖區(qū)域,其中區(qū)域①是正方形,區(qū)域②和③是矩形,且AGBG32.設(shè)BG的長(zhǎng)為2x米.

1)用含x的代數(shù)式表示DF ;

2x為何值時(shí),區(qū)域③的面積為180平方米;

3x為何值時(shí),區(qū)域③的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC5CDAB于點(diǎn)DCD3.點(diǎn)P從點(diǎn)A出發(fā)沿線段AC以每秒1個(gè)單位的速度向終點(diǎn)C運(yùn)動(dòng).過(guò)點(diǎn)PPQABBC于點(diǎn)Q,過(guò)點(diǎn)PAC的垂線,過(guò)點(diǎn)QAC的平行線,兩線交于點(diǎn)E.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

1)求線段PQ的長(zhǎng).(用含t的代數(shù)式表示)

2)當(dāng)點(diǎn)E落在邊AB上時(shí),求t的值.

3)當(dāng)△PQE與△ACD重疊部分圖形是四邊形時(shí),直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C、D為⊙O上的點(diǎn),且AD平分∠CAB,作DEAB于點(diǎn)E

1)求證:ACOD

2)若OE4,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB、CD相交于點(diǎn)O,則cosAOD=___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是一塊綠化帶,將陰影部分修建為花圃,已知AB=15AC=9,BC=12,陰影部分是ABC的內(nèi)切圓,一只自由飛翔的小鳥(niǎo)將隨機(jī)落在這塊綠化帶上,則小鳥(niǎo)落在花圃上的概率為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)一種商品的進(jìn)價(jià)為每件30元,售價(jià)為每件40元.每天可以銷售48件,為盡快減少庫(kù)存,商場(chǎng)決定降價(jià)促銷.

(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價(jià)降至每件32.4元,求兩次下降的百分率;

(2)經(jīng)調(diào)查,若每降價(jià)0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤(rùn),每件應(yīng)降價(jià)多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案