【題目】數(shù)學(xué)知識(shí)伴隨著人類(lèi)文明的起源而產(chǎn)生,人類(lèi)祖先為我們留下了許多珍貴的原始資料,古巴比倫楔形文字泥板書(shū)就是其中之一,古巴比倫泥板上記載了兩種利用平方數(shù)表計(jì)算兩數(shù)乘積的公式:

…①

…②

1)材料中,公式②中的空缺部分應(yīng)該是

2)請(qǐng)你驗(yàn)證材料中的公式①;

3)當(dāng),時(shí),利用公式①計(jì)算的值為

【答案】1b22)見(jiàn)解析(36

【解析】

1)利用完全平方公式將(ab2展開(kāi),留下含ab的項(xiàng),即可得出結(jié)論;

2)利用完全平方公式將(ab2和(ab2展開(kāi),合并同類(lèi)項(xiàng)后即可得出公式右邊=ab=公式左邊,由此即可證出公式成立;

3)將ab5,ab7代入公式①中,即可求出ab的值.

1)∵(ab2a2b22ab

ab [ab2a2b2]

故答案為:b2

2)公式①的右邊= [a2b22aba2b22ab]

[a2b22aba2b22ab],

×4ab

ab

因?yàn)楣舰俚淖筮叄?/span>ab,

所以公式①左邊=右邊,公式成立.

3)把ab5,ab7代入公式①,

得:ab×(5272),

×(24),

6

故答案為:6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為培育青少年科技創(chuàng)新能力,舉辦了動(dòng)漫制作活動(dòng),小明設(shè)計(jì)了點(diǎn)做圓周運(yùn)動(dòng)的一個(gè)雛形,如圖所示,甲、乙兩點(diǎn)分別從直徑的兩端點(diǎn)A、B以順時(shí)針、逆時(shí)針的方向同時(shí)沿圓周運(yùn)動(dòng),甲運(yùn)動(dòng)的路程lcm)與時(shí)間ts)滿足關(guān)系:t≥0),乙以4cm/s的速度勻速運(yùn)動(dòng),半圓的長(zhǎng)度為21cm

1)甲運(yùn)動(dòng)4s后的路程是多少?

2)甲、乙從開(kāi)始運(yùn)動(dòng)到第一次相遇時(shí),它們運(yùn)動(dòng)了多少時(shí)間?

3)甲、乙從開(kāi)始運(yùn)動(dòng)到第二次相遇時(shí),它們運(yùn)動(dòng)了多少時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD與正方形EFGH是位似形,已知A(0,5),D(0,3),E(0,1),H(0,4),則位似中心的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,點(diǎn)、、,

1)求點(diǎn)、的坐標(biāo);

2)求的面積;

3)當(dāng)點(diǎn)的坐標(biāo)是時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將正方形對(duì)折后展開(kāi)(圖④是連續(xù)兩次對(duì)折后再展開(kāi)),再按圖示方法折疊,能夠得到一個(gè)直角三角形(陰影部分),且它的一條直角邊等于斜邊的一半,這樣的圖形有( ).

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A(3,2)和點(diǎn)M(m,n)都在反比例函數(shù)y=(x>0)的圖像上,

(1)k的值,并求當(dāng)m=4時(shí),直線AM的解析式;

(2)過(guò)點(diǎn)MMPx,垂足為P,過(guò)點(diǎn)AABy,垂足為B,直線AMx軸于點(diǎn)Q,試說(shuō)明四邊形ABPQ是平行四邊形;

(3)(2)的條件下,四邊形ABPQ能否為菱形?若能,請(qǐng)求出m的值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為a的正方形,點(diǎn)G,E分別是邊AB,BC的中點(diǎn),∠AEF=90°,且EF交正方形外角的平分線CF于點(diǎn)F.

(1)證明:∠BAE=FEC;

(2)證明:AGE≌△ECF;

(3)求AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用配方法解下列方程時(shí),配方有錯(cuò)誤的是( )
A.x2﹣2x﹣99=0化為(x﹣1)2=100
B.x2+8x+9=0化為(x+4)2=25
C.2t2﹣7t﹣4=0化為(t﹣ 2=
D.3x2﹣4x﹣2=0化為(x﹣ 2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,小明在自家樓頂上的點(diǎn)A處測(cè)量建在與小明家樓房同一水平線上鄰居的電梯的高度,測(cè)得電梯樓頂部B處的仰角為45°,底部C處的俯角為26°,已知小明家樓房的高度AD=15米,求電梯樓的高度BC(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)

查看答案和解析>>

同步練習(xí)冊(cè)答案