精英家教網 > 初中數學 > 題目詳情

【題目】已知二次函數y=﹣x2+4x-

(1)用配方法把該函數解析式化為y=a(x﹣h)2+k的形式,并指出函數圖象的對稱軸和頂點坐標;

(2)求函數圖象與x軸的交點坐標.

【答案】(1)函數的對稱軸是直線 x=4,頂點坐標為(4,);(2)(1,0)或(7,0).

【解析】

(1)根據配方法可以將該函數解析式化為y=a(x-h)2+k的形式,從而可以得到該函數圖象的對稱軸和頂點坐標;

(2)令y=0求出相應的x的值,即可求得該函數圖象與x軸的交點坐標.

解:(1)∵二次函數 y=﹣=,

∴該函數的對稱軸是直線 x=4,頂點坐標為(4,);

(2)當 y=0 時,

0=y=-

解得,x1=7,x2=1,

∴函數圖象與 x 軸的交點坐標是(1,0)或(7,0).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,Rt△ ABC中,∠ACB=90°,AD平分BAC, AD的垂直平分線EFAD于點E,交BC的延長線于點F,交AB于點G,交AC于點H

(1)依題意補全圖形;

(2)求證:∠BAD=∠BFG;

(3)試猜想AB,FBFD之間的數量關系并進行證明

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點,且∠AFE=∠B.

(1)求證:∠DAF=∠CDE;

(2)求證:△ADF∽△DEC;

(3)若AE=6,AD=8,AB=7,求AF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,拋物線y=ax2-x+c經過原點O與點A6,0)兩點,過點AACx軸,交直線y=2x-2于點C,且直線y=2x-2x軸交于點D

1)求拋物線的解析式,并求出點C和點D的坐標;

2)求點A關于直線y=2x-2的對稱點A′的坐標,并判斷點A′是否在拋物線上,并說明理由;

3)點Pxy)是拋物線上一動點,過點Py軸的平行線,交線段CA′于點Q,設線段PQ的長為l,求lx的函數關系式及l的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=kx+b(k≠0)與雙曲線y=相交于點Am3),B-6n),與x軸交于點C

1)求直線y=kx+b(k≠0)的解析式;

2)若點Px軸上,且SACP=SBOC,求點P的坐標(直接寫出結果).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】公交總站(A點)與B、C兩個站點的位置如圖所示,已知AC=6km,∠B=30°,∠C=15°,求B站點離公交總站的距離即AB的長(結果保留根號).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)請畫出△ABC關于x軸對稱的△A1B1C1,并寫出點A1的坐標.

(2)請畫出△ABC繞點B逆時針旋轉90°后的△A2BC2

(3)求出(2)中C點旋轉到C2點所經過的路徑長(結果保留根號和π).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在同一平面直角坐標系中反比例函數yb0)與二次函數yax2+bxa0)的圖象大致是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設DE=x.

(1)用含x的代數式表示線段CF的長;

(2)如果把CAE的周長記作CCAE,BAF的周長記作CBAF,設=y,求y關于x的函數關系式,并寫出它的定義域;

(3)當∠ABE的正切值是時,求AB的長.

查看答案和解析>>

同步練習冊答案