【題目】蘇科版九年級下冊數學課本65頁有這樣一道習題:
如圖1,在△ABC中,∠ACB=90°,CD⊥AB,垂足為D.
(1)△ACD與△CBD相似嗎?為什么?
(2)圖中還有幾對相似三角形?是哪幾對?
復習時,小明提出了新的發(fā)現(xiàn):“利用△ACD∽△CBD∽△ABC可以進一步證明:
①CD2=ADBD,②BC2=BDAB,③AC2=ADAB.”
(1)請你按照小明的思路,選擇①、②、③中的一個進行證明;
(2)小亮研究“小明的發(fā)現(xiàn)”時,又驚喜地發(fā)現(xiàn),利用“它”可以證明“勾股定理”,請你按照小亮思路完成這個證明;
(3)小麗也由小明發(fā)現(xiàn)的“CD2=ADBD”,進一步發(fā)現(xiàn):“已知線段a、b,可以用尺規(guī)作圖作出線段c,使c2=ab”,請你完成小麗的發(fā)現(xiàn).(不要求寫出作法,請保留作圖痕跡)
科目:初中數學 來源: 題型:
【題目】如圖,∠AOB=60°,點P是∠AOB內的定點且OP=,若點M、N分別是射線OA、OB上異于點O的動點,則△PMN周長的最小值是( 。
A. B. C. 6 D. 3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直角坐標系中,點 A( 2,2)、B(0,1)點 P 在 x 軸上,且△PAB 的等腰三角形,則滿足條件的點 P 共有()個
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一堤壩的坡角∠ABC=60°,坡面長度AB=24米(圖為橫截面).為了使堤壩更加牢固,需要改變堤壩的坡面,為使得坡面的坡角∠ADB=45°,則應將堤壩底端向外拓寬(BD)多少米?(結果精確到0.1米)(參考數據:≈1.41,≈1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是等邊三角形,,點是射線上任意點(點與點不重合),連接,將線段繞點順時針旋轉得到線段,連接并延長交直線于點.
(1)如圖①,猜想的度數是__________;
(2)如圖②,圖③,當是銳角或鈍角時,其他條件不變,猜想的度數,并選取其中一種情況進行證明;
(3)如圖③,若,,,則的長為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點D(保留作圖痕跡,不要求寫作法);
(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD(AB>AD)中,點E在邊AB上,以點E為圓心,AE長為半徑的⊙E分別交AB、AD于點N、N,與BC所在的直線相切于點G
(1)求證:EG∥MN;
(2)若AB=10,AD與BC之間的距離為6,求⊙E的半徑.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com