如圖,在平面直角坐標(biāo)系中,BCX軸上,B(﹣1,0)、A(0,2),,

ACAB.(1)求線段OC的長(zhǎng).

(2)點(diǎn)PB點(diǎn)出發(fā)以每秒4個(gè)單位的速度沿x軸正半軸運(yùn)動(dòng),點(diǎn)QA點(diǎn)出發(fā)沿線段AC個(gè)單位每秒速度向點(diǎn)C運(yùn) 動(dòng),當(dāng)一點(diǎn)停止運(yùn)動(dòng),另一點(diǎn)也隨之停止,設(shè)△CPQ的面 積為S,兩點(diǎn)同時(shí)運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為t秒,求St之間關(guān)系式,并寫出自變量取值范圍.

(3)Q點(diǎn)沿射線AC按原速度運(yùn)動(dòng),⊙G過(guò)A、B、Q三點(diǎn),是否有這樣的t值使點(diǎn)P在⊙G上、如果有求t值,如果沒有說(shuō)明理由。

(1)利用即可求得OC=4.

(2)ⅰ  當(dāng)PBC上,Q在線段AC上時(shí),()過(guò)點(diǎn)QQDBC,

如圖所示,則,且,,

可得,所以

 


ⅱ  當(dāng)PBC延長(zhǎng)線上,Q在線段AC上時(shí)(),過(guò)點(diǎn)QQDBC,

如圖所示,則,且,,

可得,所以

ⅲ  當(dāng)時(shí)C、PQ都在同一直線上。

(3)若點(diǎn)P在圓G上,因?yàn)?i>AC⊥AB,所以BQ是直徑,所以,即,則,得

解得(不合題意,舍去)

所以當(dāng)t=時(shí),點(diǎn)P在圓G上.

(也可以在(2)的基礎(chǔ)上分類討論,利用相似求得)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案