【題目】如圖所示,網(wǎng)格紙中的每個小方格都是邊長為1的正方形,我們把以格點間連線為邊的三角形稱為“格點三角形”,圖中的是格點三角形.在建立平面直角坐標(biāo)系后,點的坐標(biāo)為

1)把向下平移5格后得到,寫出點的坐標(biāo),并畫出

2)把繞點按順時針方向旋轉(zhuǎn)后得到,寫出點,,的坐標(biāo),并畫出;

3)把以點為位似中心放大得到,使放大前后對應(yīng)線段的比為,寫出點,的坐標(biāo),并畫出

【答案】1)圖見解析,,;(2)圖見解析,,;(3)圖見解析,,,,

【解析】

1)直接利用平移的性質(zhì)得出對應(yīng)點位置進而得出答案;

2)直接利用旋轉(zhuǎn)的性質(zhì)得出對應(yīng)點位置進而得出答案;

3)直接利用位似圖形的性質(zhì)得出對應(yīng)點位置進而得出答案.

1)如圖所示,A1B1C1即為所求:

A1,B1,C1的坐標(biāo)分別為(3-2),(-1,-6),(5,-6

2)如圖所示A2B2C2即為所求:

A2B2,C2的坐標(biāo)分別為(-3-3),(1,1),(-51);

3)如圖所示A3B3C3即為所求:

A3,B3,C3的坐標(biāo)分別為(66),(-2,-2),(10,-2)或(-6,-6),(2,2),(-102).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在雙曲線y上,點B在雙曲線yk≠0)上,ABx軸,過點AADx軸于D.連接OB,與AD相交于點C,若AC=2CD,則k__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù))的圖象與反比例函數(shù)k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與y軸交于C點,過點AAHy軸,垂足為HOH=3,tanAOH=,點B的坐標(biāo)為(m,﹣2).求:

1)反比例函數(shù)和一次函數(shù)的解析式;

2)寫出當(dāng)反比例函數(shù)的值大于一次函數(shù)的值時的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,, 是邊上一動點(不與重合),=于點,,則線段的最大值為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解下列方程時,配方有錯誤的是(

A.化為B.化為

C.化為D.化為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線:記為,它與軸交于兩點,;將旋轉(zhuǎn)得到,交軸于;將旋轉(zhuǎn)得到,交軸于如此進行下去,直至得到,若點在第段拋物線上,則___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象與軸交于、兩點(點在點的左邊),與軸交于點,點為拋物線的頂點.

1)求拋物線的解析式;

2)點為線段上一點(點不與點、重合),過點軸的垂線,與直線交于點,與拋物線交于點,過點交拋物線于點,過點軸于點,可得矩形,如圖1,點在點左邊,當(dāng)矩形的周長最大時,求的值,并求出此時的的面積;

3)已知,點在拋物線上,連,直線,垂足為,若,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是平行四邊形,以O(shè)為圓心,OA為半徑的圓交AB于點D,延長AO交⊙O于點E,連接CD、CE,若CE是⊙O的切線.

(1)求證:CD是⊙O的切線;

(2)若⊙O的半徑為4,OC=7,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按擬定的價格進行試銷,通過對5天的試銷情況進行統(tǒng)計,得到如下數(shù)據(jù):

(1)通過對上面表格中的數(shù)據(jù)進行分析,發(fā)現(xiàn)銷量y(件)與單價(元/件)之間存在一次函數(shù)關(guān)系,求y關(guān)于的函數(shù)關(guān)系式(不需要寫出函數(shù)自變量的取值范圍);

(2)預(yù)計在今后的銷售中,銷量與單價仍然存在(2)中的關(guān)系,且該產(chǎn)品的成本是20元/件.為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少?

(3)為保證產(chǎn)品在實際試銷中銷售量不得低于30件,且工廠獲得得利潤不得低于400元,請直接寫出單價的取值范圍;

查看答案和解析>>

同步練習(xí)冊答案