某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的蘋果,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元,市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以50元的價(jià)格調(diào)查,平均每天銷售90箱,價(jià)格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量y(箱)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷售利潤(rùn)w(元)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋果的銷售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(1)由題意得:
y=90-3(x-50)
化簡(jiǎn)得:y=-3x+240;(3分)

(2)由題意得:
w=(x-40)y
(x-40)(-3x+240)
=-3x2+360x-9600;(3分)

(3)w=-3x2+360x-9600
∵a=-3<0,
∴拋物線開(kāi)口向下.
當(dāng)x=-
b
2a
=60
時(shí),w有最大值.
又x<60,w隨x的增大而增大.
∴當(dāng)x=55元時(shí),w的最大值為1125元.
∴當(dāng)每箱蘋果的銷售價(jià)為55元時(shí),可以獲得1125元的最大利潤(rùn).(4分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,若二次函數(shù)y=
3
6
x2+bx+c的圖象與x軸交于A(-2,0),B(3,0)兩點(diǎn),點(diǎn)A關(guān)于正比例函數(shù)y=
3
x的圖象的對(duì)稱點(diǎn)為C.
(1)求b、c的值;
(2)證明:點(diǎn)C在所求的二次函數(shù)的圖象上;
(3)如圖②,過(guò)點(diǎn)B作DB⊥x軸交正比例函數(shù)y=
3
x的圖象于點(diǎn)D,連結(jié)AC,交正比例函數(shù)y=
3
x的圖象于點(diǎn)E,連結(jié)AD、CD.如果動(dòng)點(diǎn)P從點(diǎn)A沿線段AD方向以每秒2個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)D沿線段DC方向以每秒1個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng).當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng),連結(jié)PQ、QE、PE.設(shè)運(yùn)動(dòng)時(shí)間為t秒,是否存在某一時(shí)刻,使PE平分∠APQ,同時(shí)QE平分∠PQC?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知A1、A2、A3是拋物線y=
1
2
x2上的三點(diǎn),A1B1、A2B2、A3B3分別垂直于x軸,垂足為B1、B2、B3,直線A2B2交線段A1A3于點(diǎn)C.
(1)如圖,若A1、A2、A3三點(diǎn)的橫坐標(biāo)依次為1,2,3,求線段CA2的長(zhǎng);
(2)如圖,若將拋物線y=
1
2
x2改為拋物線y=
1
2
x2-x+1,A1、A2、A3三點(diǎn)的橫坐標(biāo)為連續(xù)整數(shù),其他條件不變,求線段CA2的長(zhǎng);
(3)若將拋物線y=
1
2
x2改為拋物線y=ax2+bx+c,A1、A2、A3三點(diǎn)的橫坐標(biāo)為連續(xù)整數(shù),其他條件不變,請(qǐng)猜想線段CA2的長(zhǎng)(用a、b、c表示,并直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,邊長(zhǎng)為2的正方形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上,二次函數(shù)y=-
2
3
x2+bx+c
的圖象經(jīng)過(guò)B、C兩點(diǎn).
(1)直接寫出點(diǎn)B、點(diǎn)C坐標(biāo);
(2)求該二次函數(shù)的解析式;
(3)結(jié)合函數(shù)的圖象探索,直接寫出不等式-
2
3
x2+bx+c≥0
的解集為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商場(chǎng)進(jìn)行有獎(jiǎng)促銷活動(dòng),轉(zhuǎn)盤分為5個(gè)扇形區(qū)域,分別是特等獎(jiǎng)、一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)及不獲獎(jiǎng),制作轉(zhuǎn)盤時(shí),將獲獎(jiǎng)扇形區(qū)域圓心角分配如下表:
獎(jiǎng)次特等獎(jiǎng)一等獎(jiǎng)二等獎(jiǎng)三等獎(jiǎng)
圓心角10°20°30°90°
如果不用轉(zhuǎn)盤,請(qǐng)?jiān)O(shè)計(jì)一種等效試驗(yàn)方案.(要求寫清楚替代工具和試驗(yàn)規(guī)則)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

△ABC是銳角三角形,BC=6,面積為12,點(diǎn)P在AB上,點(diǎn)Q在AC上,如圖所示,正方形PQRS(RS與A在PQ的異側(cè))的邊長(zhǎng)為x,正方形PQRS與△ABC公共部分的面積為y.
(1)當(dāng)RS落在BC上時(shí),求x;
(2)當(dāng)RS不落在BC上時(shí),求y與x的函數(shù)關(guān)系式;
(3)求公共部分面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某通訊器材公司銷售一種市場(chǎng)需求較大的新型通訊產(chǎn)品,已知每件產(chǎn)品的進(jìn)價(jià)為40元,每年銷售該產(chǎn)品的總開(kāi)支(不含進(jìn)價(jià))總計(jì)120萬(wàn)元,在銷售過(guò)程中發(fā)現(xiàn),年銷售量y(萬(wàn)件)與銷售單價(jià)x(元)之間存在如圖所示的一次函數(shù)關(guān)系.
(1)求y關(guān)于x的函數(shù)關(guān)系;
(2)試寫出該公司銷售該種產(chǎn)品的年獲利W(萬(wàn)元)關(guān)于銷售單價(jià)x(元)的函數(shù)關(guān)系式(年獲利=年銷售額-年銷售產(chǎn)品總進(jìn)價(jià)-年總開(kāi)支),當(dāng)銷售單價(jià)為何值時(shí)年獲利最大?并求這個(gè)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有一農(nóng)戶用24m長(zhǎng)的籬笆圍成一面靠墻(墻長(zhǎng)12m),大小相等且彼此相連的三個(gè)矩形雞舍(如圖).
(1)雞場(chǎng)的面積能夠達(dá)到32m2嗎?若能,給出你的方案;若不能,請(qǐng)說(shuō)明理由;
(2)雞場(chǎng)的面積能夠達(dá)到80m2嗎?若能,給出你的方案;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=-
1
2
x2+bx+c
與x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸交于點(diǎn)C,對(duì)稱軸為直線x=
1
2
,OA=2
,OD平分∠BOC交拋物線于點(diǎn)D(點(diǎn)D在第一象限).
(1)求拋物線的解析式和點(diǎn)D的坐標(biāo);
(2)在拋物線的對(duì)稱軸上,是否存在一點(diǎn)P,使得△BPD的周長(zhǎng)最?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)點(diǎn)M是拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)N,使A、D、M、N四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的M點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案