【題目】解方程
(1)x2﹣4x+1=0
(2)3(x﹣2)2=x(x﹣2).
【答案】
(1)解:x2﹣4x+1=0
x2﹣4x+4=﹣1+4
(x﹣2)2=3
x﹣2=±
解得:x1=2+ ,x2=2﹣
(2)解:3(x﹣2)2=x(x﹣2)
(x﹣2)[3(x﹣2)﹣x]=0
(x﹣2)(2x﹣6)=0
解得:x1=2,x2=3
【解析】(1)利用配方法解方程;(2)利用因式分解法解方程.
【考點精析】利用配方法和因式分解法對題目進(jìn)行判斷即可得到答案,需要熟知左未右已先分離,二系化“1”是其次.一系折半再平方,兩邊同加沒問題.左邊分解右合并,直接開方去解題;已知未知先分離,因式分解是其次.調(diào)整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABC是等邊三角形,點D是線段AC上的一動點,E在BC的延長線上,且BD=DE.
(1)如圖,若點D為線段AC的中點,求證:AD=CE;
(2)如圖,若點D為線段AC上任意一點,求證:AD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c經(jīng)過A(﹣1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點P是直線l上的一個動點,當(dāng)△PAC的周長最小時,求點P的坐標(biāo);
(3)在直線l上是否存在點M,使△MAC為等腰三角形?若存在,直接寫出所有符合條件的點M的坐標(biāo);若不存在,請說明理由.
(4)若拋物線頂點為D,點Q為直線AC上一動點,當(dāng)△DOQ的周長最小時,求點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,F(xiàn)為BE的中點,連結(jié)DF,CF.
(1)如圖①,當(dāng)點D在AB上,點E在AC上,請直接寫出此時線段DF,CF的數(shù)量關(guān)系和位置關(guān)系.
(2)如圖②,在(1)的條件下將△ADE繞點A順時針旋轉(zhuǎn)45°,請你判斷此時(1)中的結(jié)論是否仍然成立,并證明你的判斷.
(3)如圖③,在(1)的條件下將△ADE繞點A順時針旋轉(zhuǎn)90°,若AD=1,AC=,求此時線段CF的長(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長度為1個單位長度的小正方形組成的正方形中,點A、B、C在小正方形的頂點上.
在圖中畫出與關(guān)于直線l成軸對稱的;
三角形ABC的面積為______;
以AC為邊作與全等的三角形,則可作出______個三角形與全等;
在直線l上找一點P,使的長最短.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E是菱形ABCD對角線CA的延長線上任意一點,以線段AE為邊作一個菱形AEFG,且菱形AEFG∽菱形ABCD,連接EB,GD.
(1)求證:EB=GD;
(2)若∠DAB=60°,AB=2,AG= ,求GD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,順次連接邊長為1的正方形ABCD四邊的中點,得到四邊形A1B1C1D1 , 然后順次連接四邊形A1B1C1D1四邊的中點,得到四邊形A2B2C2D2 , 再順次連接四邊形A2B2C2D2四邊的中點,得到四邊形A3B3C3D3 , …,按此方法得到的四邊形A8B8C8D8的周長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com