【題目】RtABC中,∠C=90°,AC=20cm,BC=15cm.現(xiàn)有動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC向點(diǎn)C方向運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CB也向點(diǎn)B方向運(yùn)動(dòng).如果點(diǎn)P的速度是4cm/秒,點(diǎn)Q的速度是2cm/秒,它們同時(shí)出發(fā),當(dāng)有一點(diǎn)到達(dá)所在線段的端點(diǎn)時(shí),就停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

(1)用含t的代數(shù)式表示RtCPQ的面積S;

(2)當(dāng)t=3秒時(shí),P、Q兩點(diǎn)之間的距離是多少?

(3)當(dāng)t為多少秒時(shí),以點(diǎn)C、P、Q為頂點(diǎn)的三角形與△ABC相似?

【答案】 秒或秒時(shí),以點(diǎn)、、為頂點(diǎn)的三角形與相似.

【解析】

1)由點(diǎn)P點(diǎn)Q的運(yùn)動(dòng)速度和運(yùn)動(dòng)時(shí)間,又知AC,BC的長(zhǎng)可將CP、CQ用含t的表達(dá)式求出,代入直角三角形面積公式SCPQ=CP×CQ求解;

2)在RtCPQ,當(dāng)t=3,可知CP、CQ的長(zhǎng),運(yùn)用勾股定理可將PQ的長(zhǎng)求出

3)應(yīng)分兩種情況當(dāng)RtCPQRtCAB時(shí),根據(jù)=可求出時(shí)間t;當(dāng)RtCPQRtCBA時(shí),根據(jù)=可求出時(shí)間t

1)由題意得AP=4t,CQ=2t,CP=204t,因此RtCPQ的面積為S=CP×CQ=0t5);

2)由題意得AP=4tCQ=2t,CP=204t當(dāng)t=3秒時(shí),CP=204t=8cmCQ=2t=6cm

RtCPQ,由勾股定理得PQ=;

3)由題意得AP=4t,CQ=2t,CP=204t

分兩種情況討論:

①當(dāng)RtCPQRtCAB時(shí),解得t=3;

②當(dāng)RtCPQRtCBA時(shí),,,解得t=

因此t=3秒或t=秒時(shí),以點(diǎn)C、P、Q為頂點(diǎn)的三角形與△ABC相似

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,平分,與相交于點(diǎn)邊的中點(diǎn),連接相交于點(diǎn),下列結(jié)論:①;②;③是等腰三角形;④.正確的有( )個(gè).

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小紅爸爸從家騎電瓶車出發(fā),沿一條直路到相距2400m的學(xué)校接小紅回家,小紅爸爸出發(fā)的同時(shí),小紅以96m/min的速度從學(xué)校沿同一條道路步行回家,小紅爸爸趕到學(xué)校校門口等候2min后知道小紅已離校,立即沿原路以原速返回,設(shè)他們出發(fā)的時(shí)間為t min,圖示中的折線OABD表示小紅爸爸與家之間的距離S1t之間的函數(shù)關(guān)系,線段EF表示小紅與家之間的距離S2t之間的函數(shù)關(guān)系,則小紅爸爸從家出發(fā)在返回途中追上小紅的時(shí)間是(

A.12minB.16minC.18minD.20min

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)yax22ax1(a是常數(shù),a≠0),下列結(jié)論正確的是( )

A. 當(dāng)a1時(shí),函數(shù)圖象過點(diǎn)(1,1)

B. 當(dāng)a=-2時(shí),函數(shù)圖象與x軸沒有交點(diǎn)

C. a>0,則當(dāng)x≥1時(shí),yx的增大而減小

D. a<0,則當(dāng)x≤1時(shí),yx的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對(duì)稱軸.

(1)求拋物線的函數(shù)關(guān)系式;

(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)PAC的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo);

(3)在直線l上是否存在點(diǎn)M,使MAC為等腰三角形?若存在,直接寫出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖案中既是中心對(duì)稱圖形,又是軸對(duì)稱圖形的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱軸與x軸交于點(diǎn)D.

(1)求二次函數(shù)的表達(dá)式;

(2)y軸上是否存在一點(diǎn)P,使PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);

(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線PA交O于A、B兩點(diǎn),AE是O的直徑,點(diǎn)C為O上一點(diǎn),且AC平分PAE,過C作CDPA,垂足為D.

(1)求證:CD為O的切線;

(2)若DC+DA=6,⊙O的直徑為10,求AB的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊三角形中,的中點(diǎn),延長(zhǎng)線上的一點(diǎn),且,作,垂足為,求:

1的度數(shù);

2)求證:的中點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案