【題目】如果關(guān)于x的方程沒(méi)有實(shí)數(shù)根,那么關(guān)于x的方程的實(shí)數(shù)根的個(gè)數(shù)是(

A.2B.1C.0D.不能確定

【答案】D

【解析】

先根據(jù)第一個(gè)方程沒(méi)有實(shí)數(shù)根求出m的取值范圍,再利用一元二次方程的根的判別式分析第二個(gè)方程即可.

由題意得分兩種情況討論:

1)當(dāng)時(shí),代入關(guān)于x的方程

解得,不符合題意

2)當(dāng)時(shí),則關(guān)于x的方程根的判別式小于零

解得

綜上,m的取值范圍為

因?yàn)?/span>,所以也需分下面兩種情況討論:

①當(dāng)時(shí),代入關(guān)于x的方程

解得,即此時(shí)方程的實(shí)數(shù)根的個(gè)數(shù)為1

②當(dāng)時(shí),關(guān)于x的方程根的判別式為:

則此時(shí)方程有兩個(gè)不相等的實(shí)數(shù)根,即方程的實(shí)數(shù)根的個(gè)數(shù)為2

綜上,當(dāng)時(shí),所求方程的實(shí)數(shù)根的個(gè)數(shù)為1;當(dāng)時(shí),所求方程的實(shí)數(shù)根的個(gè)數(shù)為2

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料:

問(wèn)題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2PB=,PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長(zhǎng).

李明同學(xué)的思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,畫(huà)出旋轉(zhuǎn)后的圖形(如圖2),連接PP′,可得△P′PC是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),從而得到∠BPC=AP′B=__________;,進(jìn)而求出等邊△ABC的邊長(zhǎng)為_(kāi)_________;

問(wèn)題得到解決.

請(qǐng)你參考李明同學(xué)的思路,探究并解決下列問(wèn)題:如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=BP=,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問(wèn)題

定義如果二次函數(shù)y=a1x2+b1x+c1a1≠0,a1,b1,c1是常數(shù)y=a2x2+b2x+c2a2≠0a2,b2,c2是常數(shù)滿(mǎn)足a1+a2=0,b1=b2,c1+c2=0,則稱(chēng)這兩個(gè)函數(shù)互為“旋轉(zhuǎn)函數(shù)”

求函數(shù)y=﹣x2+4x﹣3的“旋轉(zhuǎn)函數(shù)”.小明是這樣思考的由函數(shù)y=﹣x2+4x﹣3可知a1=﹣1,b1=4,c1=﹣3根據(jù)a1+a2=0,b1=b2c1+c2=0,求出a2,b2,c2就能確定這個(gè)函數(shù)的“旋轉(zhuǎn)函數(shù)”

1請(qǐng)參考小明的方法寫(xiě)出函數(shù)y=﹣x2+4x﹣3的“旋轉(zhuǎn)函數(shù)”;

2若函數(shù)y=x23nx+n互為“旋轉(zhuǎn)函數(shù)”,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形ABCD中,AB3,BC4,點(diǎn)EBC邊上任一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B處,當(dāng)CE的長(zhǎng)為_____時(shí),△CEB恰好為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,△ABC中,ABAC,∠A36°

1)作AB邊的垂直平分線(xiàn),垂足為M,交ACN,連結(jié)BN.(不寫(xiě)作法,保留作圖痕跡)

2)①直接寫(xiě)出∠ABN的度數(shù)為   ;

②若BC12,直接寫(xiě)出BN的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解學(xué)生每周課外閱讀時(shí)間的情況,對(duì)3000名學(xué)生采用隨機(jī)抽樣的方式進(jìn)行了問(wèn)卷調(diào)查,調(diào)查結(jié)果分為“2小時(shí)以?xún)?nèi)”、“2小時(shí)~3小時(shí)”、“3小時(shí)~4小時(shí)”和“4小時(shí)以上”四個(gè)等級(jí),分別用AB、C、D表示,根據(jù)調(diào)查結(jié)果繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,由圖中所給出的信息解答下列問(wèn)題:

1x   ,樣本容量是   ;

2)將不完整的條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)請(qǐng)估計(jì)該校3000名學(xué)生中每周課外閱讀時(shí)間在“2小時(shí)以上”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地計(jì)劃用120180天(含120180天)的時(shí)間建設(shè)一項(xiàng)水利工程,工程需要運(yùn)送的土石方總量為360萬(wàn)米3

1)寫(xiě)出運(yùn)輸公司完成任務(wù)所需的時(shí)間y(單位:天)與平均每天的工作量x(單位:萬(wàn)米3)之間的函數(shù)關(guān)系式.并給出自變量x的取值范圍;

2)由于工程進(jìn)度的需要,實(shí)際平均每天運(yùn)送土石方比原計(jì)劃多20%,工期比原計(jì)劃減少了24天,原計(jì)劃和實(shí)際平均每天運(yùn)送土石方各是多少萬(wàn)米3?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)長(zhǎng)方體紙盒的平面展開(kāi)圖,已知紙盒中相對(duì)兩個(gè)面上的數(shù)互為相反數(shù).

1)填空:a   ,b   ,c   

2)先化簡(jiǎn),再求值:5a2b[2a2b32abca2b]+4abc

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) y =kx2 +(k +1)x +1(k 為實(shí)數(shù)),

(1)當(dāng) k=3 時(shí),求此函數(shù)圖象與 x 軸的交點(diǎn)坐標(biāo);

(2)判斷此函數(shù)與 x 軸的交點(diǎn)個(gè)數(shù),并說(shuō)明理由;

(3)當(dāng)此函數(shù)圖象為拋物線(xiàn),且頂點(diǎn)在 x 軸下方,頂點(diǎn)到 y 軸的距離為 2,求 k 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案