如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O為△ABC的內(nèi)切圓,點D是斜邊AB的中點,則tan∠ODA=( )

A.
B.
C.
D.2
【答案】分析:設(shè)⊙O與AB,AC,BC分別相切于點E,F(xiàn),G,連接OE,OF,OG,則OE⊥AB.根據(jù)勾股定理得AB=10,再根據(jù)切線長定理得到AF=AE,CF=CG,從而得到四邊形OFCG是正方形,根據(jù)正方形的性質(zhì)得到設(shè)OF=x,則CF=CG=OF=x,AF=AE=6-x,BE=BG=8-x,建立方程求出x值,進(jìn)而求出AE與DE的值,最后根據(jù)三角形函數(shù)的定義即可求出最后結(jié)果.
解答:解:過O點作OE⊥AB OF⊥AC OG⊥BC,

∴∠OGC=∠OFC=∠OED=90°,
∵∠C=90°,AC=6 BC=8,
∴AB=10
∵⊙O為△ABC的內(nèi)切圓,
∴AF=AE,CF=CG (切線長相等)
∵∠C=90°,
∴四邊形OFCG是矩形,
∵OG=OF,
∴四邊形OFCG是正方形,
設(shè)OF=x,則CF=CG=OF=x,AF=AE=6-x,BE=BG=8-x,
∴6-x+8-x=10,
∴OF=2,
∴AE=4,
∵點D是斜邊AB的中點,
∴AD=5,
∴DE=AD-AE=1,
∴tan∠ODA==2.
故選D.
點評:此題要能夠根據(jù)切線長定理證明:作三角形的內(nèi)切圓,其中的切線長等于切線長所在的兩邊和與對邊差的一半;直角三角形內(nèi)切圓的半徑等于兩條直角邊的和與斜邊的差的一半.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當(dāng)點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運動時間為t(s).
(1)當(dāng)點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點N落在AB邊上時,求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案