【題目】如圖,點A,B在數(shù)軸上表示的數(shù)分別為-4和+16,A,B兩點間的距離可記為AB
(1) 點C在數(shù)軸上A,B兩點之間,且AC=BC,則C點對應(yīng)的數(shù)是_________
(2) 點C在數(shù)軸上A,B兩點之間,且BC=4AC,則C點對應(yīng)的數(shù)是_________
(3) 點C在數(shù)軸上,且AC+BC=30,求點C對應(yīng)的數(shù)?
(4) 若點A在數(shù)軸上表示的數(shù)是a,B表示的數(shù)是b,則AB=_________
【答案】(1)6;(2)0;(3)21或-9;(4).
【解析】
設(shè)點C對應(yīng)的數(shù)為x.
(1)根據(jù)AC=BC列出方程,解方程即可;
(2)根據(jù)BC=4AC列出方程,解方程即可;
(3)分C在A的左邊或C在B點右邊兩種情況進(jìn)行討論,根據(jù)AC+BC=30列出方程即可求解;
(4)根據(jù)數(shù)軸上兩點之間的距離公式列出代數(shù)式.
設(shè)C表示的數(shù)為x,
(1)根據(jù)題意得x-(-4)=16-x,解得x=6,答C點對應(yīng)的數(shù)為6;
(2)根據(jù)題意得4[x-(-4)]=16-x,解得x=0,答C點對應(yīng)的數(shù)為0;
(3)當(dāng)C在A左側(cè)時AC+BC=30,則-4-x+16-x=30,解得x=-9
當(dāng)C在B右側(cè)時,x-16+x-(-4)=30解得x=21,所以C點對應(yīng)的數(shù)為-9或21.
(4).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中 過點A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點,且∠AFE=∠D.
(1)求證:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,∠BAD=60°,AC=AD,AC平分∠BAD,M,N分別為AC,CD的中點,BM的延長線交AD于點E,連接MN,BN.對于下列四個結(jié)論:①MN∥AD;② BM=MN;③△BAE≌△ACB;④AD=BN,其中正確結(jié)論的序號是( )
A. ①②③④ B. ①②③ C. ①②④ D. ①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.
(1)這次調(diào)查的市民人數(shù)為________人,m=________,n=________;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)若該市約有市民100000人,請你根據(jù)抽樣調(diào)查的結(jié)果,估計該市大約有多少人對“社會主義核心價值觀”達(dá)到“A.非常了解”的程度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 經(jīng)過A(-3,0),C(5,0)兩點,點B為拋物線頂點,拋物線的對稱軸與x軸交于點D.
(1)求拋物線的解析式;
(2)動點P從點B出發(fā),沿線段BD向終點D作勻速運動,速度為每秒1個單位長度,運動時間為t,過點P作PM⊥BD,交BC于點M,以PM為正方形的一邊,向上作正方形PMNQ,邊QN交BC于點R,延長NM交AC于點E.
①當(dāng)t為何值時,點N落在拋物線上;
②在點P運動過程中,是否存在某一時刻,使得四邊形ECRQ為平行四邊形?若存在,求出此時刻的t值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細(xì)觀察下面的正四面體、正六面體、正八面體,解決下列問題:
⑴填空:
①正四面體的頂點數(shù)V= ,面數(shù)F= ,棱數(shù)E= .
②正六面體的頂點數(shù)V= ,面數(shù)F= ,棱數(shù)E= .
③正八面體的頂點數(shù)V= ,面數(shù)F= ,棱數(shù)E= .
⑵若將多面體的頂點數(shù)用V表示,面數(shù)用F表示,棱數(shù)用E表示,則V、F、E之間的數(shù)量關(guān)系可用一個公式來表示,這就是著名的歐拉公式,請寫出歐拉公式:
⑶如果一個多面體的棱數(shù)為30,頂點數(shù)為20,那么它有多少個面?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a<0)與x軸交于A(﹣2,0)、B(4,0)兩點,與y軸交于點C,且OC=2OA.
(1)試求拋物線的解析式;
(2)直線y=kx+1(k>0)與y軸交于點D,與拋物線交于點P,與直線BC交于點M,記m=,試求m的最大值及此時點P的坐標(biāo);
(3)在(2)的條件下,點Q是x軸上的一個動點,點N是坐標(biāo)平面內(nèi)的一點,是否存在這樣的點Q、N,使得以P、D、Q、N四點組成的四邊形是矩形?如果存在,請求出點N的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于E,OD⊥BC交⊙O于D,DE交BC于F,點P為CB延長線上的一點,PE延長交AC于G,PE=PF,下列4個結(jié)論:①GE=GC;②AG=GE;③OG∥BE;④∠A=∠P.其中正確的結(jié)論是_____(填寫所有正確結(jié)論的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com