【題目】解方程
(1)6﹣4(x+2)=3(x﹣3)
(2)﹣1
(3)=1
(4)
【答案】(1)x=1;(2)x=;(3)x=;(4)x=.
【解析】
(1)方程去括號,移項,合并同類項,把x系數(shù)化為1,即可求出解;
(2)方程去分母,去括號,移項,合并同類項,把x系數(shù)化為1,即可求出解;
(3)方程整理后,去分母,去括號,移項,合并同類項,把x系數(shù)化為1,即可求出解;
(4)方程整理后,移項,合并同類項,把x系數(shù)化為1,即可求出解.
解:(1)去括號得:6﹣4x﹣8=3x﹣9,
移項得:﹣4x﹣3x=﹣9+8-6,
合并同類項得:﹣7x=﹣7,
解得:x=1;
(2)去分母得:8x﹣4﹣20x+2=6x+3﹣12,
移項得:8x﹣6x﹣20x=3﹣12+4-2,
合并同類項得:﹣18x=﹣7,
解得:x=;
(3)方程整理得:,
去分母得:9x+60﹣20x﹣8=6,
移項得:9x﹣20x=6-60+8,
合并同類項得:﹣11x=﹣46,
解得:x=;
(4)方程整理得:,
移項得:,
合并同類項得:,
解得:x=.
科目:初中數(shù)學 來源: 題型:
【題目】為了鼓勵市民節(jié)約用水,某市自來水公司對每戶用水量進行了分段計費,每戶每月用水量在規(guī)定噸數(shù)以下的收費標準相同,規(guī)定噸數(shù)以上的超過部分收費相同.如表是小明家1﹣4月用水量和交費情況:
月份 | 1 | 2 | 3 | 4 |
用水量(噸) | 6 | 8 | 12 | 15 |
費用(元) | 12 | 16 | 28 | 37 |
(Ⅰ)若小明家5月份用水25噸,則應繳多少元水費?
(Ⅱ)若該戶居民某月份用水為噸,則應收水費多少元?(用含的代數(shù)式表示,并化簡).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+6交x軸于A(﹣2,0),B(3,0)兩點,交y軸于點C.
(1)求a,b的值;
(2)連接BC,點P為第一象限拋物線上一點,過點A作AD⊥x軸,過點P作PD⊥BC于交直線AD于點D,設點P的橫坐標為t,AD長為d,求d與t的函數(shù)關(guān)系式(請求出自變量t的取值范圍);
(3)在(2)的條件下,DP與BC交于點F,過點D作DE∥AB交BC于點E,點Q為直線DP上方拋物線上一點,連接AP、PC,若DP=CE,∠QPC=∠APD時,求點Q坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=54°,AD是△ABC的角平分線.求作AB的垂直平分線MN交AD于點E,連接BE;并證明DE=DB.(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線 (a、b、c是常數(shù),)的對稱軸為直線.
(1) b=______;(用含a的代數(shù)式表示)
(2)當時,若關(guān)于x的方程在的范圍內(nèi)有解,求c的取值范圍;
(3)若拋物線過點(,),當時,拋物線上的點到x軸距離的最大值為4,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=5,以B為圓心BC為半徑畫弧交AD于點E,連接CE,作BF⊥CE,垂足為F,則tan∠FBC的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以坐標原點O為圓心,2為半徑畫圓,P是⊙O上一動點且在第一象限內(nèi),過點P作⊙O的切線,與x、y軸分別交于點A、B.
(1)求證:△OBP與△OPA相似;
(2)當點P為AB中點時,求出P點坐標;
(3)在⊙O上是否存在一點Q,使得以Q,O,A、P為頂點的四邊形是平行四邊形.若存在,試求出Q點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知方程組的解滿足x為非正數(shù),y為負數(shù).
(1)求m的取值范圍;
(2)化簡:|m﹣3|﹣|m+2|;
(3)在m的取值范圍內(nèi),當m為何整數(shù)時,不等式2mx+x<2m+1的解為x>1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“2018年某明星演唱會”于6月3日在某市奧體中心舉辦.小明去離家300的奧體中心看演唱會,到奧體中心后,發(fā)現(xiàn)演唱會門票忘帶了,此時離演唱會開始還有30分鐘,于是他跑步回家,拿到票后立刻找到一輛“共享單車”原路趕回奧體中心,已知小明騎車的時間比跑步的時間少用了5分鐘,且騎車的平均速度是跑步的平均速度的1.5倍.
(1)求小明跑步的平均速度;
(2)如果小明在家取票和尋找“共享單車”共用了4分鐘,他能否在演唱會開始前趕到奧體中心?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com