【題目】若直線y=kx(k>0)與雙曲線y=相交于點(diǎn)A(x1,y1)和B(x2,y2),則x1y2+x2y1的值是____.
【答案】-6
【解析】
先根據(jù)點(diǎn)A(,y1),B(x2,y2)是雙曲線y=上的點(diǎn)可得出·y1=x2·y2=3,再根據(jù)直線y=kx(k>0)與雙曲線y=交于點(diǎn)A(x1,y1),B(x2,y2)兩點(diǎn)可得出=-x2,y1=-y2,再把此關(guān)系代入所求代數(shù)式進(jìn)行計(jì)算即可.
∵點(diǎn)A(x1,y1),B(x2,y2)是雙曲線y=上的點(diǎn)
∴x1·y1=x2·y2=3①,
∵直線y=kx(k>0)與雙曲線y=交于點(diǎn)A(x1,y1),B(x2,y2)兩點(diǎn),
∴x1=-x2,y1=-y2②,
∴原式=-x1y1-x2y2=-3-3=-6.
故答案為:-6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,,,.
(1)求的度數(shù)的大小;
(2)如圖2,若連接,請判斷直線與直線的位置關(guān)系,并說明理由;
(3)如圖2,根據(jù)(2)問的條件,連接與直線交于點(diǎn),若,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi),△ABC和△ABD如圖①放置,其中AB=BD.
小明做了如下操作:
將△ABC繞著邊AC的中點(diǎn)旋轉(zhuǎn)180°得到△CEA,將△ABD繞著邊AD的中點(diǎn)旋轉(zhuǎn)180°得到△DFA,如圖②,請完成下列問題:
(1)試猜想四邊形ABDF是什么特殊四邊形,并說明理由;
(2)連接EF,CD,如圖③,求證:四邊形CDEF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B,C三點(diǎn)是同一個(gè)平面直角坐標(biāo)系內(nèi)不同的三點(diǎn),A點(diǎn)在坐標(biāo)軸上,點(diǎn)A向左平移3個(gè)單位長度,再向上平移2個(gè)單位長度就到了B點(diǎn);直線BC∥y軸,C點(diǎn)的橫坐標(biāo)、縱坐標(biāo)互為相反數(shù),且點(diǎn)B和點(diǎn)C到x軸的距離相等.則A點(diǎn)的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,請?jiān)谙铝兴膫(gè)關(guān)系中,選出兩個(gè)恰當(dāng)?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)
關(guān)系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四邊形ABCD中, , ;
求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=與一次函數(shù)y=x+b的圖象在第一象限相交于點(diǎn)A(1,-k+4).
(1)試確定這兩個(gè)函數(shù)的表達(dá)式;
(2)求出這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)B的坐標(biāo),并求△A0B的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.若,則點(diǎn)P(,)表示原點(diǎn)B.點(diǎn)在第三象限
C.已知點(diǎn)與點(diǎn),則直線軸D.若,則點(diǎn)在第一、三象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備購買若干個(gè)足球和籃球.如果購買3個(gè)足球和2個(gè)籃球,那么共需480元;如果購買1個(gè)足球和3個(gè)籃球,那么共需440元.學(xué)校購買足球和籃球的費(fèi)用一共是3920元.
(1)求購買一個(gè)足球、一個(gè)籃球各需多少元?
(2)將籃球分給七年級,若每個(gè)班分3個(gè)籃球,則多余8個(gè)籃球;若前面的每班分5個(gè)籃球,則最后一個(gè)班分不到5個(gè).該校七年級共有多少個(gè)班?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,以點(diǎn)A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點(diǎn),再分別以E,F(xiàn)為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點(diǎn)P,作射線AP,交CD于點(diǎn)M。
(1)若∠ACD=114°,求∠MAB的度數(shù);
(2)若CN⊥AM,垂足為N,求證:△ACN≌△MCN。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com