【題目】已知反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn)A1,4)和點(diǎn)B

,).

1)求這兩個函數(shù)的表達(dá)式;

2)觀察圖象,當(dāng)>0時,直接寫出>時自變量的取值范圍;

3)如果點(diǎn)C與點(diǎn)A關(guān)于軸對稱,求△ABC的面積.

【答案】解:(1點(diǎn)A1,4)在的圖象上,1×44。

反比例函數(shù)的表達(dá)式為

點(diǎn)B的圖象上,。點(diǎn)B(-2,-2)。

點(diǎn)AB在一次函數(shù)的圖象上,

,解得。

一次函數(shù)的表達(dá)式為。

2)由圖象可知,當(dāng) 01時,成立

3點(diǎn)C與點(diǎn)A關(guān)于軸對稱,∴C1,-4)。

過點(diǎn)BBD⊥AC,垂足為D,則D1,-5)。

∴△ABC的高BD13,底為AC48。

∴SABC=AC·BD=×8×3=12。

【解析】

1)根據(jù)點(diǎn)A的坐標(biāo)求出反比例函數(shù)的解析式為,再求出B的坐標(biāo)是(-2,-2),利用待定系數(shù)法求一次函數(shù)的解析式。

2)當(dāng)一次函數(shù)的值小于反比例函數(shù)的值時,直線在雙曲線的下方,直接根據(jù)圖象寫出當(dāng)>0時,一次函數(shù)的值小于反比例函數(shù)的值x的取值范圍或0x1

3)根據(jù)坐標(biāo)與線段的轉(zhuǎn)換可得出:AC、BD的長,然后根據(jù)三角形的面積公式即可求出答案。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游樂場部分平面圖如圖所示,C、E、A在同一直線上,D、E、B在同一直線上,測得A處與E處的距離為80 米,C處與D處的距離為34米,∠C=90°,∠ABE=90°,∠BAE=30°.( ≈1.4, ≈1.7)

(1)求旋轉(zhuǎn)木馬E處到出口B處的距離;
(2)求海洋球D處到出口B處的距離(結(jié)果保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,∠DAB的平分線交CDE點(diǎn),且DE=5,EC=8

1)求□ABCD的周長;

2)連結(jié)AC,若AC=12,求□ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線,把的直角三角板的直角頂點(diǎn)放在直線.將直角三角板在平面內(nèi)繞點(diǎn)任意轉(zhuǎn)動,若轉(zhuǎn)動的過程中,直線與直線的夾角為60°,則的度數(shù)為___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點(diǎn),且A,B兩點(diǎn)的橫坐標(biāo)分別是24,則△OAB的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是一高為4米的平臺,AB是與CD底部相平的一棵樹,在平臺頂C點(diǎn)測得樹頂A點(diǎn)的仰角α=30°,從平臺底部向樹的方向水平前進(jìn)3米到達(dá)點(diǎn)E,在點(diǎn)E處測得樹頂A點(diǎn)的仰角β=60°,求樹高AB(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】禁漁期間,我漁政船在A處發(fā)現(xiàn)正北方向B處有一艘可以船只,測得A、B兩處距離為200海里,可疑船只正沿南偏東45°方向航行,我漁政船迅速沿北偏東30°方向前去攔截,經(jīng)歷4小時剛好在C處將可疑船只攔截.求該可疑船只航行的平均速度(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】提出問題:

1)如圖,我們將圖(1)所示的凹四邊形稱為鏢形”.鏢形圖中,、的數(shù)量關(guān)系為____.

2)如圖(2),已知平分,,求的度數(shù).

由(1)結(jié)論得:

所以

因?yàn)?/span>

所以

所以.

解決問題:

1)如圖(3),直線平分, 平分的外角,猜想、的數(shù)量關(guān)系是______;

2)如圖(4),直線平分的外角, 平分的外角,猜想的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列方程變形正確的是( )
A.方程3x﹣2=2x﹣1移項(xiàng),得3x﹣2x=﹣1﹣2
B.方程3﹣x=2﹣5(x﹣1)去括號,得3﹣x=2﹣5x﹣1
C.方程 可化為3x=6.
D.方程 系數(shù)化為1,得x=﹣1

查看答案和解析>>

同步練習(xí)冊答案