如圖,已知⊙O的半徑為2,弦AB⊥半徑OC,沿AB將弓形ACB翻折,使點C與圓心O重合,則月牙形(圖中實線圍成的部分)的面積是   
【答案】分析:首先求出AB=2,∠AOB=120°,再利用S弓形ACB=S扇形AOB-S△AOB,以及月牙形的面積是S-2S弓形ACB即可得出答案.
解答:解:連接OA,OB,
∵OC⊥AB于E,
根據(jù)題意,得OE=OC=OB=1,
則∠ABO=30°,BE==,
∴AB=2,∠AOB=120°.
S弓形ACB=S扇形AOB-S△AOB=-AB×EO=π-
則月牙形(圖中實線圍成的部分)的面積是:S-2S弓形ACB=4π-2(π-)=π+2,
故答案為:π+2
點評:此題主要考查了扇形面積求法以及不規(guī)則圖形面積計算方法,根據(jù)已知圖象得出月牙形的面積=S-2S弓形ACB是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知⊙O的半徑為6cm,射線PM經(jīng)過點O,OP=10cm,射線PN與⊙O相切于點Q.A,B兩點同時從點精英家教網(wǎng)P出發(fā),點A以5cm/s的速度沿射線PM方向運動,點B以4cm/s的速度沿射線PN方向運動.設運動時間為ts.
(1)求PQ的長;
(2)當t為何值時,直線AB與⊙O相切?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為1,銳角△ABC內(nèi)接于⊙O,作BD⊥AC于點D,OM⊥AB于點M.sin∠CBD=
13
.則OM=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為5,銳角△ABC內(nèi)接于⊙O,弦AB=8,BD⊥AC于點D,OM⊥AB于點M,則sin∠CBD的值等于( 。
A、0.6B、0.8C、0.5D、1.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•新疆)如圖,已知⊙O的半徑為4,CD是⊙O的直徑,AC為⊙O的弦,B為CD延長線上的一點,∠ABC=30°,且AB=AC.
(1)求證:AB為⊙O的切線;
(2)求弦AC的長;
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為5,兩弦AB、CD相交于AB中點E,且AB=8,CE:ED=4:9,則圓心到弦CD的距離為(  )
A、
2
14
3
B、
28
9
C、
2
7
3
D、
80
9

查看答案和解析>>

同步練習冊答案