【題目】如圖.利用一面墻(墻的長(zhǎng)度不限),用20m的籬笆圍成一個(gè)矩形場(chǎng)地ABCD.設(shè)矩形與墻垂直的一邊AB=xm,矩形的面積為Sm2.
(1)用含x的式子表示S;
(2)若面積S=48m2,求AB的長(zhǎng);
(3)能圍成S=60m2的矩形嗎?說明理由.
【答案】(1)S=x(20﹣2x) (2)4m或6m (3)答案見解析
【解析】
(1)靠墻的一面不需要籬笆,矩形養(yǎng)雞場(chǎng)只需要一個(gè)長(zhǎng),兩個(gè)寬用籬笆圍成.設(shè)寬為xm,長(zhǎng)就是(20-2x)m,用矩形面積公式列表示出S;
(2)令s=48,求得x的值即可;
(3)令s=60,利用根的判別式判斷即可;
解:(1)設(shè)矩形與墻垂直的一邊AB=xm,矩形的面積為Sm2,則長(zhǎng)為(20﹣2x)(m);
依題意列方程:
根據(jù)題意得到:S=x(20﹣2x)
(2)x(20﹣2x)=48,
解得x=4或x=6,
故AB的長(zhǎng)為4m或6m.
(3)不能.
因?yàn)樵O(shè)矩形場(chǎng)地的寬為x(m),則長(zhǎng)為(20﹣2x)(m),
依題意列方程:x(20﹣2x)=60,
即x2﹣10x+30=0,
△=102﹣4×1×30=﹣20<0,
方程無實(shí)數(shù)解,
故矩形場(chǎng)地的面積不能達(dá)到60m2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點(diǎn),過點(diǎn)D作⊙O的切線交BC于點(diǎn)M,則DM的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將圖中的型(正方形)、型(菱形)、型(等腰直角三角形)紙片分別放在個(gè)盒子中,盒子的形狀、大小、質(zhì)地都相同,再將這個(gè)盒子裝入一只不透明的袋子中.
(1)攪勻后從中摸出個(gè)盒子,盒中的紙片既是軸對(duì)稱圖形又是中心對(duì)稱圖形的概率是 ;
(2)攪勻后先從中摸出個(gè)盒子(不放回),再從余下的個(gè)盒子中摸出個(gè)盒子,把摸出的個(gè)盒中的紙片長(zhǎng)度相等的邊拼在一起,求拼成的圖形是軸對(duì)稱圖形的概率.(不重疊無縫隙拼接)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD⊥BC垂足是D,AN是∠BAC的外角∠CAM的平分線,CE⊥AN,垂足是E,連接DE交AC于F.
(1)求證:四邊形ADCE為矩形;
(2)求證:DF∥AB,DF=;
(3)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE為正方形,簡(jiǎn)述你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于點(diǎn)F.
(1)求證:△AEF≌△DEB;
(2)求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等邊△ABC中,點(diǎn)D是邊AC上一點(diǎn),連接BD,將△BCD繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)60,得到△BAE,連接ED,則下列結(jié)論中:①AE∥BC;②∠DEB=60;③∠ADE=∠BDC,其中正確結(jié)論的序號(hào)是( )
A.①②B.①③C.②③D.只有①
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.
(1)判斷直線CD和⊙O的位置關(guān)系,并說明理由;
(2)過點(diǎn)B作⊙O的切線BE交直線CD于點(diǎn)E,若BE=5,CD=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2x+c經(jīng)過點(diǎn)A(0,3),B(-1,0),請(qǐng)回答下列問題:
(1)求拋物線對(duì)應(yīng)的二次函數(shù)的表達(dá)式;
(2)拋物線的頂點(diǎn)為D,對(duì)稱軸與x軸交于點(diǎn)E,連接BD,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點(diǎn),ME⊥AM,ME交AD的延長(zhǎng)線于點(diǎn)E.
(1)求證:△ABM ∽△EMA;
(2)若AB=2,BM=1,求DE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com