如圖,直線與x軸,y軸分別相交于點B,點C,經(jīng)過B、C兩點的拋物線與x軸的另一交點為A,頂點為P,且對稱軸是直線
(1)求A點的坐標(biāo)及該拋物線的函數(shù)表達(dá)式;
(2)求出∆PBC的面積;
(3)請問在對稱軸右側(cè)的拋物線上是否存在點Q,使得以點A、B、C、Q所圍成的四邊形面積是∆PBC的面積的?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

(1)(1,0),.(2)3;(3)

解析試題分析:(1)先由直線y=-x+3與x軸,y軸分別相交于點B,點C,求出B(3,0),C(0,3),再根據(jù)拋物線y=ax2+bx+c的對稱軸是直線x=2,求出與x軸的另一交點A的坐標(biāo)為(1,0),然后將A(1,0),B(3,0),C(0,3)代入y=ax2+bx+c,運用待定系數(shù)法即可求出該拋物線的函數(shù)表達(dá)式;
(2)先利用配方法將二次函數(shù)寫成頂點式,得到頂點P的坐標(biāo),再設(shè)拋物線的對稱軸交直線y=-x+3于點M,由PM∥y軸,得出M的坐標(biāo),然后根據(jù)S△PBC=•PM•|xC-xB|即可求出△PBC的面積;
(3)設(shè)Q(m,m2-4m+3),首先求出以點A、B、C、Q所圍成的四邊形面積=S△PBC=×3=.再分兩種情況進(jìn)行討論:①當(dāng)點Q在PB段時,由S四邊形ACBQ=S△ABC+S△ABQ=3+|yQ|,得出|yQ|=-3=,即-m2+4m-3=,解方程求出m的值,得到Q1的坐標(biāo);②當(dāng)點Q在BE段時,過Q點作QH⊥x軸,交直線于H,連結(jié)BQ.由S四邊形ACQB=S△ABC+S△CBQ=3+(m2-3m),得出(m2-3m)=-3=,解方程求出m的值,得到Q2的坐標(biāo).
試題解析:(1)直線與x軸相交于點,
∴當(dāng)時,,
∴點的坐標(biāo)為
又∵拋物線過兩點,且對稱軸為,根據(jù)拋物線的對稱性,
∴點的坐標(biāo)為
過點,易知,

又∵拋物線過點,
解得   

(2)連結(jié)PB、PC,

,得,
設(shè)拋物線的對稱軸交直線于點,
又∵PM∥y軸,則,

(3)由圖可知,點Q應(yīng)分為兩種情況,在PB段或在BE段。
      

設(shè)
當(dāng)點Q在PB段時,,
,可知
,即
解之,得,
又點Q在對稱軸的右側(cè),則

當(dāng)點Q在BE段時,過Q作QH⊥x軸,交直線于H,連結(jié)BQ,則設(shè)
,

,
,解之,得
又點Q在對稱軸的右側(cè),則,

綜上所述,當(dāng)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,AB=10cm.點P從點A出發(fā),以5cm/s的速度從點A運動到終點B;同時,點Q從點C出發(fā),以3cm/s的速度從點C運動到終點B,連結(jié)PQ;過點P作PD⊥AC交AC于點D,將△APD沿PD翻折得到△A′PD,以A′P和PB為鄰邊作?A′PBE,A′E交射線BC于點F,交射線PQ于點G.設(shè)?A′PBE與四邊形PDCQ重疊部分圖形的面積為Scm2,點P的運動時間為ts.
(1)當(dāng)t為何值時,點A′與點C重合;
(2)用含t的代數(shù)式表示QF的長;
(3)求S與t的函數(shù)關(guān)系式;
(4)請直接寫出當(dāng)射線PQ將?A′PBE分成的兩部分圖形的面積之比是1:3時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

今年5月1日起實施《青海省保障性住房準(zhǔn)入分配退出和運營管理實施細(xì)則》規(guī)定:公共租賃住房和廉租住房并軌運行(以下簡稱并軌房),計劃10年內(nèi)解決低收入人群住房問題.已知第x年(x為正整數(shù))投入使用的并軌房面積為y百萬平方米,且y與x的函數(shù)關(guān)系式為y=-x+5.由于物價上漲等因素的影響,每年單位面積租金也隨之上調(diào).假設(shè)每年的并軌房全部出租完,預(yù)計第x年投入使用的并軌房的單位面積租金z與時間x滿足一次函數(shù)關(guān)系如下表:

時間x(單位:年,x為正整數(shù))
 
1
 
2
 
3
 
4
 
5
 

 
單位面積租金z(單位:元/平方米)
 
50
 
52
 
54
 
56
 
58
 
 
 
 
(1)求出z與x的函數(shù)關(guān)系式;
(2)設(shè)第x年政府投入使用的并軌房收取的租金為W百萬元,請問政府在第幾年投入使用的并軌房收取的租金最多,最多為多少百萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y=﹣x2+3x+4與x軸交于A、B兩點,與y軸交于C點,點D在拋物線上且橫坐標(biāo)為3.
(1)求tan∠DBC的值;
(2)點P為拋物線上一點,且∠DBP=45°,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:矩形ABCD中,M為BC邊上一點, AB=BM=10,MC=14,如圖1,正方形EFGH的頂點E和點B重合,點F、G、H分別在邊AB、AM、BC上.如圖2,P為對角線AC上一動點,正方形EFGH從圖1的位置出發(fā),以每秒1個單位的速度沿BC向點C勻速移動;同時,點P從C點出發(fā),以每秒1個單位的速度沿CA向點A勻速移動.當(dāng)點F到達(dá)線段AC上時,正方形EFGH和點P同時停止運動.設(shè)運動時間為t秒,解答下列問題:
(1)在整個運動過程中,當(dāng)點F落在線段AM上和點G落在線段AC上時,分別求出對應(yīng)t的值;
(2)在整個運動過程中,設(shè)正方形重疊部分面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式以及自變量t的取值范圍;
(3)在整個運動過程中,是否存在點P,使是以DG為腰的等腰三角形?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

定義1:在△ABC中,若頂點A,B,C按逆時針方向排列,則規(guī)定它的面積為“有向面積”;若頂點A,B,C按順時針方向排列,則規(guī)定它的面積的相反數(shù)為△ABC的“有向面積”.“有向面積”用表示,例如圖1中,,圖2中,.
定義2:在平面內(nèi)任取一個△ABC和點P(點P不在△ABC的三邊所在直線上),稱有序數(shù)組(,)為點P關(guān)于△ABC的“面積坐標(biāo)”,記作,例如圖3中,菱形ABCD的邊長為2,,則,點G關(guān)于△ABC的“面積坐標(biāo)”.在圖3中,我們知道,利用“有向面積”,我們也可以把上式表示為:.
應(yīng)用新知:
(1)如圖4,正方形ABCD的邊長為1,則        ,點D關(guān)于△ABC的“面積坐標(biāo)”是       ;探究發(fā)現(xiàn):
(2)在平面直角坐標(biāo)系中,點,
①若點P是第二象限內(nèi)任意一點(不在直線AB上),設(shè)點P關(guān)于的“面積坐標(biāo)”為,
試探究之間有怎樣的數(shù)量關(guān)系,并說明理由;
②若點是第四象限內(nèi)任意一點,請直接寫出點P關(guān)于的“面積坐標(biāo)”(用x,y表示);
解決問題:
(3)在(2)的條件下,點,點Q在拋物線上,求當(dāng)的值最小時,點Q的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線y=x+m與拋物線y=x2-2x+l交于不同的兩點M、N(點M在點N的左側(cè)).
(1)設(shè)拋物線的頂點為B,對稱軸l與直線y=x+m的交點為C,連結(jié)BM、BN,若S△MBC=S△NBC,求直線MN的解析式;
(2)在(1)條件下,已知點P(t,0)為x軸上的一個動點,
①若△PMN為直角三角形,求點P的坐標(biāo).
②若∠MPN>90°,則t的取值范圍是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y=x²+bx+c與直線y=x-1交于A、B兩點.點A的橫坐標(biāo)為-3,點B在y軸上,點P是y軸左側(cè)拋物線上的一動點,橫坐標(biāo)為m,過點P作PC⊥x軸于C,交直線AB于D.
(1)求拋物線的解析式;
(2)當(dāng)m為何值時,;
(3)是否存在點P,使△PAD是直角三角形,若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知關(guān)于的一元二次方程
(1)求證:方程總有兩個實數(shù)根;
(2)若m為整數(shù),當(dāng)此方程有兩個互不相等的負(fù)整數(shù)根時,求m的值;
(3)在(2)的條件下,設(shè)拋物線與x軸交點為A、B(點B在點A的右側(cè)),與y軸交于點C.點O為坐標(biāo)原點,點P在直線BC上,且OP=BC,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案