【題目】如圖,已知AB是O的直徑,弦CDAB于點E,點M在O上,M=D

1判斷BC、MD的位置關(guān)系,并說明理由;

2若AE=16,BE=4,求線段CD的長;

3若MD恰好經(jīng)過圓心O,求D的度數(shù)

【答案】1BCMD;理由見解析;216;330°

【解析】

試題分析:1根據(jù)圓周角定理可得出M=D=C=CBM,由此即可得出結(jié)論;

2先根據(jù)AE=16,BE=4得出OB的長,進而得出OE的長,連接OC,根據(jù)勾股定理得出CE的長,進而得出結(jié)論;

3根據(jù)題意畫出圖形,根據(jù)圓周角定理可知,M=BOD,由M=D可知D=BOD,故可得出D的度數(shù)

試題解析:1BCMD

理由:∵∠M=D,M=C,D=CBM,

∴∠M=D=C=CBM,

BCMD;

2AE=16,BE=4,

OB==10,

OE=10-4=6,

連接OC,

CDAB,

CE=CD,

在RtOCE中,

OE2+CE2=OC2,即62+CE2=102,解得CE=8,

CD=2CE=16;

3如圖2,

∵∠M=BOD,M=D,

∴∠D=BOD,

ABCD,

∴∠D=×90°=30°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,AB=AC=2,BAC=45°,AEF是由ABC繞點A按逆時針方向旋轉(zhuǎn)得到的,連接BE、CF相交于點D.

(1)求證: BE=CF;

(2)請?zhí)骄啃D(zhuǎn)角等于多少度時,四邊形ABDF為菱形,證明你的結(jié)論;

(3)(2)的條件下,CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校計劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法.為提前了解學生的選修情況,學校采取隨機抽樣的方法進行問卷調(diào)查(每個被調(diào)查的學生必須選擇而且只能選擇其中一門).對調(diào)查結(jié)果進行了整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:

(1)本次調(diào)查的學生共有 人,在扇形統(tǒng)計圖中,m的值是 ;

(2)將條形統(tǒng)計圖補充完整;

(3)在被調(diào)查的學生中,選修書法的有2名女同學,其余為男同學,現(xiàn)要從中隨機抽取2名同學代表學校參加某社區(qū)組織的書法活動,請直接寫出所抽取的2名同學恰好是1名男同學和1名女同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】O的直徑為10cm,弦AB平行弦CD,這兩弦長分別為6cm8cm,它們之間的距離為________cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為x=﹣1.給出四個結(jié)論:①b2>4ac;2a+b=0;3a+c=0;a+b+c=0.其中正確結(jié)論的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是線段BC上的一個動點,以AD為直徑畫⊙O分別交AB,ACE,F,連接EF,則線段EF長度的最小值為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax2+bx+1的頂點為D,與x軸正半軸交于A、B兩點,AB左,與y軸正半軸交于點C,當△ABD和△OBC均為等腰直角三角形(O為坐標原點)時,b的值為( 。

A. 2 B. 2或﹣4 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點是⊙外一點,與⊙相切于點,交⊙于點,點分別為線段,上的動點,若,,則的最小值為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點M的坐標是(5,4),⊙M與y軸相切于點C,與x軸相交于A,B兩點.

(1)請直接寫出A,B,C三點的坐標,并求出過這三點的拋物線解析式;

(2)設(shè)(1)中拋物線解析式的頂點為E,

求證:直線EA與⊙M相切;

(3)在拋物線的對稱軸上,是否存在點P,且點P在x軸的上方,使△PBC是等腰三角形?

如果存在,請求出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案