【題目】下列各圖形都是由同樣大小的圓和正三角形按一定的規(guī)律組成.其中,第①個(gè)圖形由8個(gè)圓和1個(gè)正三角形組成,第②個(gè)圖形由16個(gè)圓和4個(gè)正三角形組成,第③個(gè)圖形由24個(gè)圓和9個(gè)正三角形組成,……則第_____個(gè)圖形中圓和正三角形的個(gè)數(shù)相等

【答案】8

【解析】

根據(jù)前面3個(gè)圖形的關(guān)系可以推出第n個(gè)圖形由(2n+1)×4-4=8n個(gè)圓和個(gè)正三角形組成,代入可得結(jié)果

第①個(gè)圖形由3×4-4=8個(gè)圓和1個(gè)正正三角形du組成,

第②個(gè)圖形由5×4-4=16個(gè)圓和22=4個(gè)正三角形組成,

第③個(gè)圖形由7×4-4=24個(gè)圓和32=9個(gè)正三角形組成,

所以第n個(gè)圖形由(2n+1)×4-4=8n個(gè)圓和個(gè)正三角形組成,

∵圓和正三角形的個(gè)數(shù)相等,

∴8n=

解得n=8,或n=0(不合題意,舍去).

故答案是8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(模型介紹)

古希臘有一個(gè)著名的“將軍飲馬問(wèn)題”,大致內(nèi)容如下:古希臘一位將軍,每天都要巡查河岸同側(cè)的兩個(gè)軍營(yíng).他總是先去營(yíng),再到河邊飲馬,之后,再巡查營(yíng).如圖①,他時(shí)常想,怎么走才能使每天走的路程之和最短呢?大數(shù)學(xué)家海倫曾用軸對(duì)稱(chēng)的方法巧妙地解決了這個(gè)問(wèn)題.如圖②,作點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn),連結(jié)與直線(xiàn)交于點(diǎn),連接,則的和最小.請(qǐng)你在下列的閱讀、理解、應(yīng)用的過(guò)程中,完成解答.理由:如圖③,在直線(xiàn)上另取任一點(diǎn),連結(jié),,,∵直線(xiàn)是點(diǎn),的對(duì)稱(chēng)軸,點(diǎn),上,

(1)∴__________,_________,∴____________.在中,∵,∴,即最。

(歸納總結(jié))

在解決上述問(wèn)題的過(guò)程中,我們利用軸對(duì)稱(chēng)變換,把點(diǎn)在直線(xiàn)同側(cè)的問(wèn)題轉(zhuǎn)化為在直線(xiàn)的兩側(cè),從而可利用“兩點(diǎn)之間線(xiàn)段最短”,即轉(zhuǎn)化為“三角形兩邊之和大于第三邊”的問(wèn)題加以解決(其中點(diǎn)的交點(diǎn),即,三點(diǎn)共線(xiàn)).由此,可拓展為“求定直線(xiàn)上一動(dòng)點(diǎn)與直線(xiàn)同側(cè)兩定點(diǎn)的距離和的最小值”問(wèn)題的數(shù)學(xué)模型.

(模型應(yīng)用)

2)如圖④,正方形的邊長(zhǎng)為4,的中點(diǎn),上一動(dòng)點(diǎn).求的最小值.

解析:解決這個(gè)問(wèn)題,可借助上面的模型,由正方形對(duì)稱(chēng)性可知,點(diǎn)關(guān)于直線(xiàn)對(duì)稱(chēng),連結(jié)于點(diǎn),則的最小值就是線(xiàn)段的長(zhǎng)度,則的最小值是__________

3)如圖⑤,圓柱形玻璃杯,高為,底面周長(zhǎng)為,在杯內(nèi)離杯底的點(diǎn)處有一滴蜂蜜,此時(shí)一只螞蟻正好在外壁,離杯上沿與蜂蜜相對(duì)的點(diǎn)處,則螞蟻到達(dá)蜂的最短路程為_________

4)如圖⑥,在邊長(zhǎng)為2的菱形中,,將沿射線(xiàn)的方向平移,得到,分別連接,,則的最小值為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 邊長(zhǎng)為的正方形的對(duì)角線(xiàn)交于點(diǎn), 將正方形沿直線(xiàn)折疊, 點(diǎn)C落在對(duì)角線(xiàn)的點(diǎn)處,折痕于點(diǎn),交于點(diǎn),則的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,ABC=30°,CDE是等邊三角形,點(diǎn)D在邊AB上.

(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;

(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想EDEB數(shù)量關(guān)系,并加以證明;

(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EHAB于點(diǎn)H,過(guò)點(diǎn)EGEAB,交線(xiàn)段AC的延長(zhǎng)線(xiàn)于點(diǎn)G,AG=5CG,BH=3.求CG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,我國(guó)古建筑的大門(mén)上常常懸掛著巨大的匾額,圖2中的線(xiàn)段就是懸掛在墻壁上的某塊匾額的截面示意圖.已知米,.從水平地面點(diǎn)處看點(diǎn),仰角,從點(diǎn)處看點(diǎn),仰角.且米,求匾額懸掛的高度的長(zhǎng).(參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某青春黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對(duì)幫扶的貧困家庭贈(zèng)送甲、乙兩種樹(shù)苗讓其栽種.已知乙種樹(shù)苗的價(jià)格比甲種樹(shù)苗貴10元,用480元購(gòu)買(mǎi)乙種樹(shù)苗的棵數(shù)恰好與用360元購(gòu)買(mǎi)甲種樹(shù)苗的棵數(shù)相同.

(1)求甲、乙兩種樹(shù)苗每棵的價(jià)格各是多少元?

(2)在實(shí)際幫扶中,他們決定再次購(gòu)買(mǎi)甲、乙兩種樹(shù)苗共50棵,此時(shí),甲種樹(shù)苗的售價(jià)比第一次購(gòu)買(mǎi)時(shí)降低了10%,乙種樹(shù)苗的售價(jià)不變,如果再次購(gòu)買(mǎi)兩種樹(shù)苗的總費(fèi)用不超過(guò)1500元,那么他們最多可購(gòu)買(mǎi)多少棵乙種樹(shù)苗?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為等腰斜邊上的兩點(diǎn),,.則

A.3B.C.4D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,平行四邊形內(nèi)有兩個(gè)全等的正六邊形,若陰影部分的面積記為,平行四邊形的面積記為,的值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校決定加強(qiáng)毛球、籃球、乒乓球、排球、球五項(xiàng)球類(lèi)運(yùn)動(dòng),每位同學(xué)必須且只能選擇一項(xiàng)球類(lèi)運(yùn)動(dòng),對(duì)該校學(xué)生隨機(jī)抽取進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖:

運(yùn)動(dòng)項(xiàng)目

頻數(shù)(人數(shù))

毛球

30

籃球

乒乓球

36

排球

12

請(qǐng)根據(jù)以上圖表信息解答下列問(wèn)題:

(1)頻數(shù)分布表中的 , ;

(2)在扇形統(tǒng)計(jì)圖中,“排球”所在的扇形的圓心角為

(3)全校有多少名學(xué)生選擇參加乒乓球運(yùn)動(dòng)?

查看答案和解析>>

同步練習(xí)冊(cè)答案