(1)如圖1,求作一點P,使P到兩條直線的距離相等,且使PA=PB;(保留作圖痕跡)
(2)如圖2,在△ABC中,AB=AC,點M、N在邊BC上,且AM=AN,試判斷BM和CN的大小關系,并說明理由.

解:①


②BM=CN.
過點A作AP⊥BC于P,
∵AB=AC,AP⊥BC,
∴BP=CP,
又∵AM=AN,AP⊥MN,
∴PM=PN,
∴BP-MP=CP-NP.
即BM=CN.
分析:①連接AB,分別作角平分線和中垂線,交點P即可;
②過點A作AP⊥BC于P,根據(jù)等腰三角形的性質(zhì),高、中線、角平分線三線合一,求證BP=CP,PM=PN即可證明.
點評:此題主要考查學生對角平分線的性質(zhì)、線段垂直平分線的性質(zhì)和等腰三角形的性質(zhì)的理解和掌握,此題涉及到的知識點較多,屬于中檔題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

九(1)班數(shù)學課題學習小組,為了研究學習二次函數(shù)問題,他們經(jīng)歷了實踐--應用--探究的過程:
(1)實踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標系,請你求出拋物線的解析式.
(2)應用:按規(guī)定機動車輛通過隧道時,車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時不考慮兩車間的空隙)?
(3)探究:該課題學習小組為進一步探索拋物線的有關知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點C、D落在拋物線上,頂點A、B落在x軸 上.設矩形ABCD的周長為l求l的最大值.
II•如圖④,過原點作一條y=x的直線OM,交拋物線于點M,交拋物線對稱軸于點N,P 為直線0M上一動點,過P點作x軸的垂線交拋物線于點Q.問在直線OM上是否存在點P,使以P、N、Q為頂點的三角形是等腰直角三角形?若存在,請求出P點的坐標;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

九(1)班數(shù)學課題學習小組,為了研究學習二次函數(shù)問題,他們經(jīng)歷了實踐--應用--探究的過程:
(1)實踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標系,請你求出拋物線的解析式.
(2)應用:按規(guī)定機動車輛通過隧道時,車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時不考慮兩車間的空隙)?
(3)探究:該課題學習小組為進一步探索拋物線的有關知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點C、D落在拋物線上,頂點A、B落在x軸 上.設矩形ABCD的周長為l求l的最大值.
II•如圖④,過原點作一條y=x的直線OM,交拋物線于點M,交拋物線對稱軸于點N,P 為直線0M上一動點,過P點作x軸的垂線交拋物線于點Q.問在直線OM上是否存在點P,使以P、N、Q為頂點的三角形是等腰直角三角形?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:湖南省中考真題 題型:解答題

九(1)班數(shù)學課題學習小組,為了研究學習二次函數(shù)問題,他們經(jīng)歷了實踐--應用--探究的過程:
(1)實踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標系,請你求出拋物線的解析式;
(2)應用:按規(guī)定機動車輛通過隧道時,車頂部與隧道頂部在豎直方向上的高度差至少為0.5m,為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時不考慮兩車間的空隙)?
(3)探究:該課題學習小組為進一步探索拋物線的有關知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點C、D落在拋物線上,頂點A、B落在x軸上,設矩形ABCD的周長為l求l的最大值;
II.如圖④,過原點作一條y=x的直線OM,交拋物線于點M,交拋物線對稱軸于點N,P 為直線0M上一動點,過P點作x軸的垂線交拋物線于點Q,問在直線OM上是否存在點P,使以P、N、Q為頂點的三角形是等腰直角三角形?若存在,請求出P點的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:2012年河北省唐山市古冶區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

九(1)班數(shù)學課題學習小組,為了研究學習二次函數(shù)問題,他們經(jīng)歷了實踐--應用--探究的過程:
(1)實踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標系,請你求出拋物線的解析式.
(2)應用:按規(guī)定機動車輛通過隧道時,車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時不考慮兩車間的空隙)?
(3)探究:該課題學習小組為進一步探索拋物線的有關知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點C、D落在拋物線上,頂點A、B落在x軸 上.設矩形ABCD的周長為l求l的最大值.
II•如圖④,過原點作一條y=x的直線OM,交拋物線于點M,交拋物線對稱軸于點N,P 為直線0M上一動點,過P點作x軸的垂線交拋物線于點Q.問在直線OM上是否存在點P,使以P、N、Q為頂點的三角形是等腰直角三角形?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年河北省承德三中中考數(shù)學模擬試卷(二)(解析版) 題型:解答題

九(1)班數(shù)學課題學習小組,為了研究學習二次函數(shù)問題,他們經(jīng)歷了實踐--應用--探究的過程:
(1)實踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標系,請你求出拋物線的解析式.
(2)應用:按規(guī)定機動車輛通過隧道時,車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時不考慮兩車間的空隙)?
(3)探究:該課題學習小組為進一步探索拋物線的有關知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點C、D落在拋物線上,頂點A、B落在x軸 上.設矩形ABCD的周長為l求l的最大值.
II•如圖④,過原點作一條y=x的直線OM,交拋物線于點M,交拋物線對稱軸于點N,P 為直線0M上一動點,過P點作x軸的垂線交拋物線于點Q.問在直線OM上是否存在點P,使以P、N、Q為頂點的三角形是等腰直角三角形?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案