【題目】王強同學用10塊高度都是2cm的相同長方體小木塊,壘了兩堵與地面垂直的木墻,木墻之間剛好可以放進一個等腰直角三角板(AC=BC,∠ACB=90°),點C在DE上,點A和B分別與木墻的頂端重合,則兩堵木墻之間的距離為______cm.
【答案】20
【解析】
根據(jù)題意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,進而得到∠ADC=∠CEB=90°,再根據(jù)等角的余角相等可得∠BCE=∠DAC,再證明△ADC≌△CEB即可,利用全等三角形的性質(zhì)進行解答.
解:由題意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,
∴∠ADC=∠CEB=90°,
∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,
∴∠BCE=∠DAC,
在△ADC和△CEB中, ,
∴△ADC≌△CEB(AAS);
由題意得:AD=EC=6cm,DC=BE=14cm,
∴DE=DC+CE=20(cm),
答:兩堵木墻之間的距離為20cm.
故答案是:20.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=20°,點P在OA邊上.
(1)以點O為圓心,OP長為半徑作,交OB于點C;
(2)分別以點P、C為圓心,PC長為半徑作弧,交于點D、E;
(3)連接DE,分別交OC、OP于點F、G;
(4)連接DP.
根據(jù)以上作圖過程及所作圖形,下列結(jié)中正確的是_____.(填序號)
①OC垂直平分DP;②∠COD=∠COP;③DF=FG;④OD=DE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場經(jīng)營某種品牌的玩具,購進時的單價是30元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)該玩具銷售單價定為多少元時,商場能獲得12000元的銷售利潤?
(2)該玩具銷售單價定為多少元時,商場獲得的銷售利潤最大?最大利潤是多少?
(3)若玩具廠規(guī)定該品牌玩具銷售單價不低于46元,且商場要完成不少于500件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用180元購進甲種玩具的件數(shù)與用300元購進乙種玩具的件數(shù)相同.
(1)求每件甲種、乙種玩具的進價分別是多少元?
(2)商場計劃購進甲、乙兩種玩具共50件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1050元,商場共有幾種進貨方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD是BC邊上的中線.求證:AD⊥BC.
(填空)
證明:∵AD是BC邊上的中線
∴BD=CD(中線的意義)
在△ABD和△ACD中
∵
①________;②________;③________.
∴ ________≌ ________(________)
∴∠ADB=________(________)
∴∠ADB= ∠BDC=90°(平角的定義)
∴AD⊥BC(垂直的定義)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC.
(1)尺規(guī)作圖:過點C作AB的垂線交AB于點O.不寫作法,保留作圖痕跡;
(2)分別以直線AB,OC為x軸,y軸建立平面直角坐標系,使點B,C 均在正半軸上.若AB=7.5,OC=4.5,∠A=45°,寫出點B關于y軸的對稱點D的坐標;
(3)在(2)的條件下,求△ACD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com