【題目】已知:△ABC是正三角形,P是三角形內(nèi)一點,PA=3,PB=4,PC=5.求:∠APB的度數(shù).
【答案】150°
【解析】
將△ABP旋轉(zhuǎn)60°得到△BCQ,連接PQ,意證△BCQ≌△BAP,由于∠PBQ=60°,BP=BQ,易知△BPQ是等邊三角形,從而有PQ=PB=4,而PC=5,CQ=3,由勾股定理逆定理可知△PQC是直角三角形,即∠PQC=90°,則可求出∠APB.
解:把△ABP繞點B順時針旋轉(zhuǎn)60°得到△BCQ,連接PQ.
由旋轉(zhuǎn)可知,△BCQ≌△BAP
∴CQ=PA=3,∠BQC=∠APB
∵∠PBQ=60°,BP=BQ,
∴△BPQ是等邊三角形,
∴PQ=PB=4,∠PQB=60°
∵PC=5
∴在△PQC中,,42+32=52
即PQ2+QC2=PC2,
∴△PQC是直角三角形
∴∠PQC=90°
∴∠BQC=∠PQB +∠PQC =60°+90°=150°,
∴∠APB=150°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于點,,交軸于點,點,是二次函數(shù)圖象上關(guān)于拋物線對稱軸的一對對稱點,一次函數(shù)的圖象過點,.
請直接寫出點的坐標;
求二次函數(shù)的解析式;
根據(jù)圖象直接寫出一次函數(shù)值大于二次函數(shù)值的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A、E、F、C在一條直線上,AE=CF,過點E、F分別作DE⊥AC,BF⊥AC,且AB=CD.連接BD,交AC于點O.
(1)如圖1,求證:BF=DE.
(2)將△DEC沿AC方向平移到如圖2的位置,其余條件不變,若BF=3cm,請直接寫出DE的長是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,有下列四個結(jié)論:①;②;③;④,其中正確的個數(shù)有( )
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在二次函數(shù)y=ax2+bx+c的圖象中,小林觀察得出下面六條信息:①ab>0;②c<0;③2a+3b=0;④4a+2b+c<0,⑤一元二次方程ax2+bx+c=4有兩個不相等實根.你認為其中正確信息的個數(shù)有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=﹣1,且過點(﹣3,0).下列說法:①abc<0;②2a﹣b=0;③4a+2b+c>0;④若(﹣4,y1),(2.5,y2)是拋物線上兩點,則y1>y2.其中說法正確的是_____(填序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的袋中裝有5個黃球、13個黑球和22個紅球,它們除顏色外都相同。
(1)求從袋中摸出一個球是黃球的概率;
(2)現(xiàn)從袋中取出若干個黑球,并放入相同數(shù)量的黃球,攪拌均勻后,使從袋中摸出一個球是黃球的概率不小于,問至少取出了多少個黑球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在筆山銀子巖坡頂處的同一水平面上有一座移動信號發(fā)射塔,
筆山職中數(shù)學興趣小組的同學在斜坡底處測得該塔的塔頂的仰角為,然后他們沿著坡度為的斜坡攀行了米,在坡頂處又測得該塔的塔頂的仰角為.求:
坡頂到地面的距離;
移動信號發(fā)射塔的高度(結(jié)果精確到米).
(參考數(shù)據(jù):,,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com