如圖所示,在梯形ABCD中,BC∥AD,DE∥AB,DE=DC,∠A=100°,則∠B=    ,∠C=    ,∠ADC=    ,∠EDC=   
【答案】分析:先根據(jù)DE∥AB,得出∠DEC=∠B=80°,結(jié)合DE=DC,可得出∠C=80°,繼而可得出∠ADC及∠EDC的度數(shù).
解答:解:∵DE∥AB,
∴∠DEC=∠B=80°,
∵DE=DC,
∴∠C=∠DEC=80°,
又∵AD∥BC,
∴∠ADC=180°-∠C=100°,
在△DEC中,∠EDC=180°-80°-80°=20°.
故答案為:80°、80°、100°、20°.
點(diǎn)評(píng):本題考查了三角形的內(nèi)角和定理、等腰三角形的性質(zhì)及平行線的性質(zhì),屬于基礎(chǔ)題,關(guān)鍵是平行線性質(zhì)的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知如圖所示,在梯形ABCD中,AD∥BC,AB=AD=DC=8,∠B=60°,連接AC.
(1)求cos∠ACB的值;
(2)若E、F分別是AB、DC的中點(diǎn),連接EF,求線段EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,點(diǎn)M是線段BC上一定點(diǎn),且MC=8.動(dòng)點(diǎn)P從C點(diǎn)出發(fā)沿C?D?A?B的路線運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)B停止.在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,使△PMC為等腰三角形的點(diǎn)P有
 
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,點(diǎn)M是線段BC上一定點(diǎn),且MC=8.動(dòng)點(diǎn)P從C點(diǎn)出發(fā)沿C→D→A→B的路線運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)B停止.在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,使△PMC為等腰三角形的點(diǎn)P有幾個(gè)?并求出相應(yīng)等腰三角形的腰長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4,DO垂直于AB.則腰長(zhǎng)是
 
.若P是梯形的對(duì)稱軸L上的點(diǎn),那么使△PDB為等腰三角形的點(diǎn)有
 
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在梯形ABCD中,AB∥DC,EF是梯形的中位線,AC交EF于G,BD交EF于H,以下說(shuō)法錯(cuò)誤的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案