【題目】我市某鎮(zhèn)組織20輛汽車裝運完ABC三種臍橙共100噸到外地銷售.按計劃,20輛汽車都要裝運,每輛汽車只能裝運同一種臍橙,且必須裝滿.根據(jù)下表提供的信息,解答以下問題:

1)設裝運A種臍橙的車輛數(shù)為,裝運B種臍橙的車輛數(shù)為,求之間的函數(shù)關(guān)系式;

2)如果裝運每種臍橙的車輛數(shù)都不少于4輛,那么車輛的安排方案有幾種?并寫出每種安排方案;

3)若要使此次銷售獲利最大,應采用哪種安排方案?并求出最大利潤的值.

【答案】1且為整數(shù));(2)有5種方案,具體見試題解析;(3)方案一,14.08萬元.

【解析】試題(1)等量關(guān)系為:車輛數(shù)之和=20

2)關(guān)系式為:裝運每種臍橙的車輛數(shù)≥4;

3)總利潤為:裝運A種臍橙的車輛數(shù)×6×12+裝運B種臍橙的車輛數(shù)×5×16+裝運C種臍橙的車輛數(shù)×4×10,然后按x的取值來判定.

試題解析:(1)根據(jù)題意,裝運A種臍橙的車輛數(shù)為,裝運B種臍橙的車輛數(shù)為,那么裝運C種臍橙的車輛數(shù)為(),則有: ,整理得:且為整數(shù));

2)由(1)知,裝運A、B、C三種臍橙的車輛數(shù)分別為, .由題意得: ,解得: ,因為x為整數(shù),所以x的值為4,56,78,所以安排方案共有5種.

方案一:裝運A種臍橙4車,B種臍橙12車,C種臍橙4車;

方案二:裝運A種臍橙5車,B種臍橙10車,C種臍橙5車,

方案三:裝運A種臍橙6車,B種臍橙8車,C種臍橙6車,

方案四:裝運A種臍橙7車,B種臍橙6車,C種臍橙7車,

方案五:裝運A種臍橙8車,B種臍橙4車,C種臍橙8車;

3)設利潤為(百元)則: ,的值隨的增大而減。估麧最大,則,故選方案一, 最大=(百元)=14.08(萬元),故當裝運A種臍橙4車,B種臍橙12車,C種臍橙4車時,獲利最大,最大利潤為14.08萬元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=x+m的圖象與反比例函數(shù)y=的圖象交于A,B兩點,且與x軸交于點C,點A的坐標為(2,1).

(1)求m及k的值;

(2)求點C的坐標,并結(jié)合圖象寫出不等式組0<x+m≤的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,函數(shù)圖象的交于點A,若點A的坐標為

B的坐標為______;

若點P為第一象限內(nèi)雙曲線上不同于點B的任意一點.

設直線PAx軸于點M,直線PBx軸于點N,求證

P的坐標為時,連結(jié)PO延長交C,求證四邊形PACB為矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線與雙曲線相交于點、,與x軸相交于C點.

求點A、B的坐標及直線的解析式;

的面積;

觀察第一象限的圖象,直接寫出不等式的解集;

如圖,在x軸上是否存在點P,使得的和最。咳舸嬖,請說明理由并求出P點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解學生大課間活動的跳繩情況,隨機抽取了50名學生每分鐘跳繩的次數(shù)進行統(tǒng)計,把統(tǒng)計結(jié)果繪制成如表和直方圖.

次數(shù)

70≤x<90

90≤x<110

110≤x<130

130≤x<150

150≤x<170

人數(shù)

8

23

16

2

1

根據(jù)所給信息,回答下列問題:

(1)本次調(diào)查的樣本容量是;
(2)本次調(diào)查中每分鐘跳繩次數(shù)達到110次以上(含110次)的共有的共有人;
(3)根據(jù)上表的數(shù)據(jù)補全直方圖;
(4)如果跳繩次數(shù)達到130次以上的3人中有2名女生和一名男生,學校從這3人中抽取2名學生進行經(jīng)驗交流,求恰好抽中一男一女的概率(要求用列表法或樹狀圖寫出分析過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸、軸分別交于點,.點的坐標為(,0),點 的坐標為(,0).

(1)求的值;

(2)若點)是第二象限內(nèi)的直線上的一個動點.當點運動過程中,試寫出的面積的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(3)探究:當運動到什么位置時,的面積為,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題8分) 甲、乙兩人進行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分. 如圖,甲 在O點正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達式 ,已知點O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度1.55m.

(1)當a= 時,①求h的值.②通過計算判斷此球能否過網(wǎng).
(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到與點O的水平距離為7m,離地面的高度為 m的Q處時,乙扣球成功,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為2的正三角形ABC中,P0是BC邊的中點,一束光線自P0發(fā)出射到AC上的點P1后,依次反射到AB、BC上的點P2和P3(反射角等于入射角).

(1)若∠P2P3B=45°,CP1=;
(2)若 <BP3 ,則P1C長的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等邊的邊長為2,現(xiàn)將等邊放置在平面直角坐標系中,點B和原點重合,點Cx軸正方向上,直線交x軸于點D,交y軸于點E,且如圖,現(xiàn)將等邊從圖1的位置沿x軸正方向以每秒1個單位長度的速度移動,邊AB、AC分別與線段DE交于點G、如圖,同時點P的頂點B出發(fā),以每秒2個單位長度的速度沿折線運動當點P運動到C時即停止活動,也隨之停止移動,設平移的時間為

試求直線DE的解析式;

當點P在線段AC上運動時,設點P與點H的距離為y,求yt的函數(shù)關(guān)系式,并寫出定義域;

當點P在線段AB上運動時,中恰好有一個角的度數(shù)為,請直接寫出t的值,不必寫過程.

查看答案和解析>>

同步練習冊答案