【題目】如圖,直線y=x﹣1與坐標(biāo)軸交于A,B兩點(diǎn),點(diǎn)P是曲線y=(x>0)上一點(diǎn),若△PAB是以∠APB=90°的等腰三角形,則k= _________.
【答案】4
【解析】
根據(jù)全等三角形的判定與性質(zhì),可得AD=BC,DP=CP,根據(jù)AD=BC,可得關(guān)于x的方程,根據(jù)解方程,可得x,根據(jù)待定系數(shù)法,可得函數(shù)解析式.
解:作PC⊥x軸,PD⊥y軸,如圖
,
∴∠COD=∠ODM=∠OCM=90°,
∴四邊形OCPD是矩形.
在△APD和△BPC中,
,
∴△APD≌△BPC(AAS),
∴AD=BC,DP=CP,
∴四邊形OCPD是正方形,
∴OC=OD,
∵OA=1,OB=5,
設(shè)OD=x,
則AD=x+1,BC=5﹣x,
∵AD=BC,
∴x+1=5﹣x,
解得:x=2,
即OD=OC=2,
∴點(diǎn)P的坐標(biāo)為:(2,2),
∴k=xy=4,
故答案為:4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)在第一象限,軸于,軸于,,,有一反比例函數(shù)圖象剛好過點(diǎn).
(1)分別求出過點(diǎn)的反比例函數(shù)和過,兩點(diǎn)的一次函數(shù)的函數(shù)表達(dá)式;
(2)直線軸,并從軸出發(fā),以每秒個(gè)單位長度的速度向軸正方向運(yùn)動(dòng),交反比例函數(shù)圖象于點(diǎn),交于點(diǎn),交直線于點(diǎn),當(dāng)直線運(yùn)動(dòng)到經(jīng)過點(diǎn)時(shí),停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為(秒).
①問:是否存在的值,使四邊形為平行四邊形?若存在,求出的值;若不存在,說明理由;
②若直線從軸出發(fā)的同時(shí),有一動(dòng)點(diǎn)從點(diǎn)出發(fā),沿射線方向,以每秒個(gè)單位長度的速度運(yùn)動(dòng).是否存在的值,使以點(diǎn),,,為頂點(diǎn)的四邊形為平行四邊形;若存在,求出的值,并進(jìn)一步探究此時(shí)的四邊形是否為特殊的平行四邊形;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一座人行天橋引橋部分的示意圖,上橋通道AD∥BE,水平平臺(tái)DE和地面AC平行,立柱BC和地面AC垂直,∠A=37°.已知天橋的高度BC為4.8米,引橋的水平跨度AC為8米,求水平平臺(tái)DE的長度.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組為了解我市氣溫變化情況,記錄了今年月份連續(xù)天的最低氣溫(單位:℃):.關(guān)于這組數(shù)據(jù),下列結(jié)論不正確的是( )
A.平均數(shù)是 B.中位數(shù)是 C.眾數(shù)是 D.方差是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為一座拋物線型的拱橋,AB、CD分別表示兩個(gè)不同位置的水面寬度,O為拱橋頂部,水面AB寬為10米,AB距橋頂O的高度為12.5米,水面上升2.5米到達(dá)警戒水位CD位置時(shí),水面寬為( )米.
A. 5 B. 2 C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,AD與CE分別是邊BC與AB的高,AB=12,BC=16,S△ABC=48,
求:(1)角B的度數(shù);
(2)tanC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是ABC的外接圓,AB為直徑,∠BAC的平分線交于點(diǎn)D,過點(diǎn)D作DEAC分別交AC、AB的延長線于點(diǎn)E、F.
(1)求證:EF是的切線;
(2)若AC=4,CE=2,求的長度.(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,AE是BC邊上的中線,∠C=45°,sinB=,AD=1.
(1)求BC的長;
(2)求tan∠DAE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2;
(1)求反比例函數(shù)的表達(dá)式;
(2)根據(jù)圖象直接寫出﹣x>的解集;
(3)將直線l1:y=- x沿y向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com