【題目】我們知道,任意一個正整數(shù)都可以進行這樣的分解:是正整數(shù),且),在的所有這種分解中,如果兩因數(shù)之差的絕對值最小,我們就稱的最佳分解,產(chǎn)規(guī)定:,例如:12可以分解成,,,因為,所以12的最佳分解,所以.

1)求;

2)若正整數(shù)4的倍數(shù),我們稱正整數(shù)四季數(shù),如果一個兩位正整數(shù),為自然數(shù)),交換個位上的數(shù)字與十位上的數(shù)字得到的新兩位正整數(shù)減去原來的兩位正整數(shù)所得的差為四季數(shù),那么我們稱這個數(shù)有緣數(shù),求所有有緣數(shù)的最小值.

【答案】11;(2最小值為.

【解析】

1)根據(jù)題意求出,的值代入即可.

2)根據(jù)題意列出二元一次方程,解的所有可能性,求出最小值.

解:(1

2)根據(jù)題意得:為正整數(shù))

,或

,,

,

,

,

兩位正整數(shù)為 51,62,7384,95,91

,,,

的最小值為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=90°,點CD分別在射線OA、OB上,CE是∠ACD的平分線,CE的反向延長線與∠CDO的平分線交于點F

1)當∠OCD=50°(圖1),試求∠F

2)當C、D在射線OAOB上任意移動時(不與點O重合)(圖2),∠F的大小是否變化?若變化,請說明理由;若不變化,求出∠F

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=6,BC=8,點D為邊CB上的一個動點(點D不與點B重合),過DDOAB,垂足為O,點B′在邊AB上,且與點B關(guān)于直線DO對稱,連接DB′AD

1)求證:DOB∽△ACB;

2)若AD平分∠CAB,求線段BD的長;

3)當AB′D為等腰三角形時,求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某活動小組為了估計裝有5個白球和若干個紅球每個球除顏色外都相同的袋中紅球接近多少個,在不將袋中球倒出來的情況下,分小組進行摸球試驗兩人一組,20組進行摸球?qū)嶒?/span>其中一位學生摸球,另一位學生記錄所摸球的顏色并將球放回袋中搖勻,每一組做400次試驗,匯總起來后,摸到紅球次數(shù)為6000

估計從袋中任意摸出一個球,恰好是紅球的概率是多少?

請你估計袋中紅球接近多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《山西省新能源汽車產(chǎn)業(yè)2018年行動計劃》指出,2018年全省新能源汽車產(chǎn)能將達到30萬輛,按照十三五規(guī)劃,到2020年,全省新能源汽車產(chǎn)能將達到41萬輛,若設(shè)這兩年全省新能源汽車產(chǎn)能的平均增長率為,則根據(jù)題意可列出方程是()

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A′B′C′是由ABC經(jīng)過平移得到的,它們各頂點在平面直角坐標系中的坐標如下表所示:

ABC

A(a,0)

B(3,0)

C(5,5)

A′B′C′

A′(4,2)

B′(7,b)

C′(c,7)

(1)觀察表中各對應(yīng)點坐標的變化,并填空:a=________,b=________,c=________;

(2)在平面直角坐標系中畫出ABC及平移后的A′B′C′;

(3)直接寫出A′B′C′的面積是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABC,BC=12,E、F分別是AB、AC的中點,動點P在射線EF,BPCEDCBP的平分線交CEQ,CQ=CEEP+BP=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD、DEFG都是正方形,連接AE、CG.

(1)求證AE=CG;

(2)觀察圖形,猜想AE與CG之間的位置關(guān)系并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案.已知大正方形面積為49,小正方形面積為4,若用x,y表示直角三角形的兩直角邊(xy),下列四個說法:① x2+y249;② xy2;③ x+y9;④ 2xy+449;其中說法正確的是(  )

A. ①②B. ①②④

C. ①②③D. ①②③④

查看答案和解析>>

同步練習冊答案