精英家教網 > 初中數學 > 題目詳情

作業(yè)寶如圖,在正方形ABCD中,F是AD的中點,E是BA延長線上一點,且AE=數學公式AB.
①你認為可以通過平移、軸對稱、旋轉中的哪一種方法使△ABF變到△ADE的位置?若是旋轉,指出旋轉中心和旋轉角.
②線段BF和DE之間有何數量關系?并證明.

解:(1)可以通過旋轉使△ABF變到△ADE的位置,即把△ABF以A點為旋轉中心,逆時針旋轉90°可得到△ADE;

(2)線段BF和DE的數量關系是相等.理由如下:
∵四邊形ABCD為正方形,
∴AB=AD,∠BAF=∠EAD,
∵F是AD的中點,AE=AB,
∴AE=AF,
∴△ABF以A點為旋轉中心,逆時針旋轉90°時,AB旋轉到AD,AF旋轉到AE,即F點與E點重合,B點與D點重合,
∴BF與DE為對應線段,
∴BF=DE.
分析:(1)把△ABF以A點為旋轉中心,逆時針旋轉90°可得到△ADE;
(2)根據正方形的性質得到AB=AD,∠BAF=∠EAD,又F是AD的中點,AE=AB,則AE=AF,根據旋轉的定義得到△ABF以A點為旋轉中心,逆時針旋轉90°時,AB旋轉到AD,AF旋轉到AE,于是有BF=DE.
點評:本題考查了旋轉的性質:旋轉前后兩圖形全等;對應點到旋轉中心的距離相等;對應點與旋轉中心的連線段的夾角等于旋轉角.也考查了正方形的性質.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖:在正方形網格上有△ABC,△DEF,說明這兩個三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線精英家教網,交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度;
(3)若以點O,D,E,C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長為3+
3

(1)如圖①,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長;
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點P、N分別在邊CB、CA上,求這兩個正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長.

查看答案和解析>>

同步練習冊答案