在Rt△ABC中,∠C=90°,∠A=60°,BC=6,等邊三角形DEF從初始位置(點(diǎn)E與點(diǎn)B重合,EF落在BC上,如圖1所示)在線段BC上沿BC方向以每秒1個(gè)單位的速度平移,DE、DF分別與AB相交于點(diǎn)M、N.當(dāng)點(diǎn)F運(yùn)動到點(diǎn)C時(shí),△DEF終止運(yùn)動,此時(shí)點(diǎn)D恰好落在AB上,設(shè)△DEF平移的時(shí)間為x.
(1)求△DEF的邊長;
(2)求M點(diǎn)、N點(diǎn)在BA上的移動速度;
(3)在△DEF開始運(yùn)動的同時(shí),如果點(diǎn)P以每秒2個(gè)單位的速度從D點(diǎn)出發(fā)沿DE?EF運(yùn)動,最終運(yùn)動到F點(diǎn).若設(shè)△PMN的面積為y,求y與x的函數(shù)關(guān)系式,寫出它的定義域;并說明當(dāng)P點(diǎn)在何處時(shí),△PMN的面積最大?

【答案】分析:(1)由題意知:當(dāng)F與C點(diǎn)重合時(shí)D正好在AB上,此時(shí)三角形ACD中,∠ACD=90°-60°=30°,而∠A=60°,因此∠ADC=90°,可在直角三角形BCD中,根據(jù)∠B的正弦值及BC的長求出等邊三角形的邊長;
(2)可設(shè)△DEF從初始位置移動x秒后得到△D1E1F1,那么在x秒內(nèi)M點(diǎn)移動的距離就是BM的長,由于∠D1MN=∠BME1=∠ABC=30°,因此△BE1M是個(gè)等腰三角形,過E1作E1G⊥BM,那么BG=GM=BM,可在直角三角形BE1G中,根據(jù)BE1的長求出E1G(BE1的長就是△BDF平移的距離),由此可得出BM的長除以用的時(shí)間即可得出M點(diǎn)的速度.求N點(diǎn)的速度解法類似,過F作FH⊥D1F1,設(shè)垂足為H,那么FH就是N點(diǎn)移動的距離,同樣可在直角三角形FHF1中求出FH的長,進(jìn)而可得出其速度;
(3)本題要先找出幾個(gè)關(guān)鍵點(diǎn):當(dāng)P與M重合時(shí),那么根據(jù)P的速度可表示出DM的長,而ME=BE為三角形平移的距離,據(jù)此可求出t=1.當(dāng)P到達(dá)E點(diǎn)時(shí),DP=DE,可求得此時(shí)t=
①當(dāng)P在DM之間時(shí),即0≤x≤1,MN的長可在直角三角形DMN中,根據(jù)DM和∠DMN的余弦值求出,過P作PP1⊥MN于P1,那么PP1就是MN邊上的高,可在直角三角形MPP1中根據(jù)MP的長和∠PMP1的正弦值求出(MP可根據(jù)DE-DP-ME來得出).據(jù)此可得出關(guān)于S,x函數(shù)關(guān)系式.
②當(dāng)P在EM之間時(shí),即1<x≤,可過P作PP2⊥AB與P2,那么PP2的長可在直角三角形PP2M中,根據(jù)PM的長和∠BME的正弦值求出,進(jìn)而可根據(jù)三角形的面積公式求出S、x的函數(shù)關(guān)系式.
③當(dāng)P在EF上運(yùn)動時(shí),即≤x≤3,解法同上.
根據(jù)上述三種情況得出的函數(shù)的性質(zhì)及各自的自變量的取值范圍,可求得S的最大值及對應(yīng)的x的值.
解答:解:(1)當(dāng)F點(diǎn)與C點(diǎn)重合時(shí),如圖1所示:
∵△DEF為等邊三角形,
∴∠DFE=60°
∵∠B=30°,
∴∠BDF=90°
∴FD=BC=3;

(2)過E點(diǎn)作EG⊥AB,
∵∠DEF=60°,∠B=30°,
∴∠BME=30°,
∴EB=EM
在Rt△EBG中,BG=x×cos30°=x,
∴BM=2BG=x,
∴M點(diǎn)在BA上的移動速度為=,
F點(diǎn)作FH⊥F1D1,在Rt△FF1H中,F(xiàn)H=x×cos30°=x,
點(diǎn)N在BA上的移動速度為=

(3)在Rt△DMN中,DM=3-x,MN=(3-x)×cos30°==(3-x),
當(dāng)P點(diǎn)運(yùn)動到M點(diǎn)時(shí),有2x+x=3,
∴x=1
①當(dāng)P點(diǎn)在DM之間運(yùn)動時(shí),過P點(diǎn)作PP1⊥AB,垂足為P1
在Rt△PMP1中,PM=3-x-2x=3-3x,
∴PP1=(3-3x)=(1-x),
∴y與x的函數(shù)關(guān)系式為:y=×(3-x)×(1-x)=(x2-4x+3)(0≤x≤1),
②當(dāng)P點(diǎn)在ME之間運(yùn)動時(shí),過P點(diǎn)作PP2⊥AB,垂足為P2,
在Rt△PMP2中,PM=x-(3-2x)=3(x-1),
∴PP2=(1-x),
∴y與x的函數(shù)關(guān)系式為:y=×(3-x)×(1-x),
=-(x2-4x+3)(1<x≤).
③當(dāng)P點(diǎn)在EF之間運(yùn)動時(shí),過P點(diǎn)作PP3⊥AB,垂足為P3
在Rt△PMP3中,PB=x+(2x-3)=3(x-1),
∴PP3=(x-1),
∴y與x的函數(shù)關(guān)系式為:y=×(3-x)×(x-1),
=-(x2-4x+3)(≤x≤3),
∴y=-(x-2)2+,
∴當(dāng)x=2時(shí),y最大=,
而當(dāng)P點(diǎn)在D點(diǎn)時(shí),y=×3××=,
,
∴當(dāng)P點(diǎn)在D點(diǎn)時(shí),△PMN的面積最大.
點(diǎn)評:本題為動態(tài)形問題,考查了等邊三角形和直角三角形的性質(zhì)、二次函數(shù)的應(yīng)用等知識.
綜合性強(qiáng),考查學(xué)生分類討論、數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點(diǎn),以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點(diǎn)D是AB的中點(diǎn),點(diǎn)O是△ABC的重心,則OD的長為( �。�
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為( �。�
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚敐澶婄闁挎繂鎲涢幘缁樼厱闁靛牆鎳庨顓㈡煛鐏炲墽娲存鐐达耿閹崇娀顢楁径瀣撴粓姊绘担瑙勫仩闁告柨绉堕幑銏ゅ礃椤斿槈锕傛煕閺囥劌鐏犻柛鎰ㄥ亾婵$偑鍊栭崝锕€顭块埀顒傜磼椤旂厧顣崇紒杈ㄦ尰閹峰懘骞撻幒宥咁棜婵犵數濮伴崹鐓庘枖濞戙埄鏁勯柛鏇ㄥ幗瀹曟煡鏌涢埄鍐姇闁绘挸绻橀弻娑㈩敃閿濆洨鐣洪梺闈╃稻濡炰粙寮诲☉銏℃櫜闁告侗鍠涚涵鈧紓鍌欐祰妞村摜鏁敓鐘茬畺闁冲搫鎳忛ˉ鍫熺箾閹寸偛绗氶柣搴濆嵆濮婄粯鎷呴崨濠冨創闂佹椿鍓欓妶绋跨暦娴兼潙鍐€妞ゆ挾濮寸粊锕傛⒑绾懏褰х紒鐘冲灩缁鈽夐姀鈾€鎷婚梺鍓插亞閸犳捇鍩婇弴鐔翠簻闁哄倸鐏濋顓熸叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崒娑欑暭婵犵數鍎戠徊钘壝洪敃鈧—鍐╃鐎n偅娅滈梺缁樺姈濞兼瑧娆㈤悙鐑樼厵闂侇叏绠戦崝锕傛煥閺囩偛鈧綊鎮¢弴銏$厸闁搞儯鍎辨俊濂告煟韫囨洖校濞e洤锕、鏇㈡晲韫囨埃鍋撻崸妤佺厸閻忕偛澧藉ú鎾煃閵夘垳鐣垫鐐差儏閳规垿宕堕埡鈧竟鏇犵磽閸屾艾鈧绮堟笟鈧、鏍川椤栨稑搴婇梺鍦濠㈡﹢鎮″鈧弻鐔告綇妤e啯顎嶉梺绋匡功閸忔﹢寮婚妶鍥ф瀳闁告鍋涢~顐︽⒑閸涘﹥鐓ラ柟璇х磿閹广垹鈽夊锝呬壕婵炴垶鐟$紓姘舵煟椤撴粌鈧洟婀佸┑鐘诧工缁ㄨ偐鑺辩紒妯镐簻闁哄浂浜炵粙鑽ょ磼缂佹ḿ绠撴い顐g箞椤㈡﹢鎮㈤崜韫埛闂傚倸鍊烽懗鍓佸垝椤栨稓浠氶梺璇茬箰缁绘垿鎮烽埡浣烘殾闁规壆澧楅崐鐑芥煟閹寸們姘跺箯濞差亝鐓熼幖绮瑰墲鐠愨€斥攽椤旂偓鏆┑鈩冩尦瀹曟﹢鍩¢埀顒傛崲閸℃稒鐓熼柟閭﹀幗缂嶆垶绻涢幖顓炴灍妞ゃ劊鍎甸幃娆忣啅椤旂厧澹夋俊鐐€ф俊鍥ㄦ櫠濡ゅ懎绠氶柡鍐ㄧ墛閺呮煡鏌涢妷鈺婃閹兼潙锕濠氬磼濞嗘帒鍘$紓渚囧櫘閸ㄨ泛鐣峰┑瀣櫇闁稿本姘ㄩˇ顓炩攽閻愬弶顥為柟绋挎憸缁牊寰勯幇顓犲帾闂佸壊鍋呯换鍐夐幘瓒佺懓饪伴崟顓犵厑闂侀潧娲ょ€氫即鐛Ο鍏煎磯闁烩晜甯囬崹浠嬪蓟濞戞鐔兼惞鐟欏嫭鍠栨俊鐐€戦崝濠囧磿閻㈢ǹ绠栨繛鍡樻尭缁犵敻鏌熼悜妯诲鞍妞ゆ柨瀚板娲礈瑜忕敮娑㈡煟濡ゅ啫鈻堢€殿喛顕ч埥澶娢熼柨瀣垫綌闂備礁鎲¢〃鍫ュ磻閻愮儤鍊堕柛顐ゅ枔缁犻箖鎮楅悽鐧诲綊顢撳畝鍕厱婵炲棗绻愰弳娆愩亜椤愩垻绠婚柟鐓庣秺瀹曠兘顢橀悪鍛簥濠电姵顔栭崰妤呫€冮崨顓囨稑鈻庨幘鏉戜患闂佸壊鍋呭ú姗€鍩涢幋鐘电=濞达絿娅㈡笟娑欑箾閸喐顥堥柡灞诲姂瀵挳濡搁妶澶婁粣闂備胶绮笟妤呭窗濞戞氨涓嶆繛鎴炃氬Σ鍫熺箾閸℃ê鐏ュ┑顔芥倐閺岋絾鎯旈敍鍕殯闂佺ǹ楠稿畷顒冪亱閻庡厜鍋撻柛鏇ㄥ亞椤斿棗鈹戦悙鍙夆枙濞存粍绻堥崺娑㈠箣閿旂晫鍘卞┑鐐村灦閿曨偊宕濋悢铏圭<闁绘ǹ娅曞畷宀勬煙椤旂瓔娈旀い顐g箞閹剝鎯旈敍鍕綁闂傚倷娴囧銊х矆娴h櫣鐭撻柣鐔煎亰閸ゆ洘銇勯弴妤€浜鹃悗瑙勬礃鐢帡銈导鏉戞そ闁告劦浜滅花銉╂⒒閸屾艾鈧绮堟笟鈧獮鏍敃閵堝棗浠忓銈嗗姧缁犳垹澹曢崸妤佺厵闁诡垱婢樿闂佺ǹ顑傞弲婊呮崲濞戞﹩鍟呮い鏃囧吹閸戝綊姊虹紒妯诲鞍缂佸鍨垮﹢渚€姊洪幐搴g畵闁瑰啿绻橀獮澶愬箹娴e憡鐎梺鍓插亝閹﹪寮崼鐔蜂汗闂傚倸鐗婄粙鎰垝鐠鸿 鏀介柣鎰级閳绘洟鏌涘▎蹇撴殻濠碘€崇摠缁楃喖鍩€椤掆偓椤曪絾绂掔€e灚鏅i梺缁樺姍濞佳囩嵁閹扮増鈷掑ù锝呮啞閸熺偤鏌涢弮鈧崹鍨暦濠靛棭鍚嬪璺侯儏閳ь剙鐖奸弻娑㈩敃閻樻彃濮曢梺绋匡功閺佸骞冨畡鎵虫瀻闊洦鎼╂禒鍓х磽娴f彃浜鹃梺鍛婂姀閺傚倹绂嶅⿰鍫熺厪濠电偛鐏濋崝鐢告椤掑澧い銊e劦閹瑧鎷犺閸氼偊鎮楀▓鍨灆缂侇喗鐟╅妴浣割潨閳ь剟骞冨▎鎾搭棃婵炴垶岣块鍥⒒閸屾艾鈧绮堟笟鈧獮澶愭晸閻樿尙顦梺纭呮彧缁犳垹绮堟径鎰婵烇綆鍓欐俊鑲╃棯閹呯Ш闁哄被鍔戦幃銈夊磼濞戞﹩浼�

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為( �。�
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚敐澶婄闁挎繂鎲涢幘缁樼厱闁靛牆鎳庨顓㈡煛鐏炶鈧繂鐣烽锕€唯闁挎棁濮ら惁搴♀攽閻愬樊鍤熷┑顔炬暬閹虫繃銈i崘銊у幋闂佺懓顕崑娑氱不閻樼粯鈷戠紒瀣皡閺€缁樸亜閵娿儲顥㈡鐐茬墦婵℃瓕顦柛瀣崌濡啫鈽夊▎蹇旀畼闁诲氦顫夊ú鏍ь嚕閸洖绠為柕濞垮労濞撳鎮归崶顏勭处濠㈣娲熷缁樻媴閾忕懓绗℃繛鎾寸椤ㄥ﹤鐣烽弶搴撴婵ê褰夌粭澶娾攽閻愭潙鐏﹂懣銈嗕繆閹绘帞澧涚紒缁樼洴瀹曞崬螣閸濆嫷娼旀俊鐐€曠换鎺楀窗閺嵮屾綎缂備焦蓱婵挳鏌ら幁鎺戝姢闁靛棗锕娲閳哄啰肖缂備胶濮甸幑鍥偘椤旇法鐤€婵炴垶鐟﹀▍銏ゆ⒑鐠恒劌娅愰柟鍑ゆ嫹 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佺粯鍔﹂崜娆戠矆閸愨斂浜滈柡鍥ф濞层倝鎮″鈧弻鐔告綇妤e啯顎嶉梺绋款儐閸旀瑩寮诲☉妯锋瀻闊浄绲炬晥闂備浇顕栭崰妤呮偡瑜忓Σ鎰板箻鐎涙ê顎撻梺鍛婄箓鐎氱兘鍩€椤掆偓閻倿寮诲☉銏犖╅柕澹啰鍘介柣搴㈩問閸犳牠鈥﹂柨瀣╃箚闁归棿绀侀悡娑㈡煕鐏炲墽鐓紒銊ょ矙濮婄粯鎷呴崨闈涚秺瀵敻顢楅崒婊呯厯闂佺鎻€靛矂寮崒鐐寸叆闁绘洖鍊圭€氾拷