已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①b<0;②4a+2b+c<0;③a-b+c>0;④(a+c)2<b2.其中正確的結(jié)論是( )
A.①②
B.①③
C.①③④
D.①②③④
【答案】分析:由拋物線的開(kāi)口方向判斷a與0的關(guān)系,由對(duì)稱(chēng)軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,利用圖象將x=1,-1,2代入函數(shù)解析式判斷y的值,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.
解答:解:①圖象開(kāi)口向上,對(duì)稱(chēng)軸在y軸右側(cè),能得到:a>0,->0,則b<0,正確;
②∵對(duì)稱(chēng)軸為直線x=1,∴x=2與x=0時(shí)的函數(shù)值相等,∴當(dāng)x=2時(shí),y=4a+2b+c>0,錯(cuò)誤;
③當(dāng)x=-1時(shí),y=a-b+c>0,正確;
④∵a-b+c>0,∴a+c>b;∵當(dāng)x=1時(shí),y=a+b+c<0,∴a+c<-b;∴b<a+c<-b,∴|a+c|<|b|,∴(a+c)2<b2,正確.
所以正確的結(jié)論是①③④.
故選C.
點(diǎn)評(píng):本題主要考查二次函數(shù)圖象與系數(shù)之間的關(guān)系,會(huì)利用對(duì)稱(chēng)軸的范圍求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,將x=1,-1,2代入函數(shù)解析式判斷y的值是解題關(guān)鍵,得出b<a+c<-b是本題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、已知二次函數(shù)y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c的圖象只可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點(diǎn)A.B,與y軸交于點(diǎn) C.

(1)寫(xiě)出A. B.C三點(diǎn)的坐標(biāo);(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省廣州市海珠區(qū)九年級(jí)上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個(gè)根

C.a+b+c=0          D.當(dāng)x<1時(shí),y隨x的增大而減小

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

已知二次函數(shù)y=ax+bx+c(a≠0,a,b,c為常數(shù)),對(duì)稱(chēng)軸為直線x=1,它的部分自變量與函數(shù)值y的對(duì)應(yīng)值如下表,寫(xiě)出方程ax2+bx+c=0的一個(gè)正數(shù)解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說(shuō)法錯(cuò)誤的是:

(A)圖像關(guān)于直線x=1對(duì)稱(chēng)

(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個(gè)根

(D)當(dāng)x<1時(shí),y隨x的增大而增大

查看答案和解析>>

同步練習(xí)冊(cè)答案