【題目】如圖,已知拋物線l1:y=(x﹣2)2﹣2與x軸分別交于O、A兩點(diǎn),將拋物線l1向上平移得到l2 , 過點(diǎn)A作AB⊥x軸交拋物線l2于點(diǎn)B,如果由拋物線l1、l2、直線AB及y軸所圍成的陰影部分的面積為16,則拋物線l2的函數(shù)表達(dá)式為( )
A.y=(x﹣2)2+4
B.y=(x﹣2)2+3
C.y=(x﹣2)2+2
D.y=(x﹣2)2+1
【答案】C
【解析】解:連接BC,
∵l2是由拋物線l1向上平移得到的,
∴由拋物線l1、l2、直線AB及y軸所圍成的陰影部分的面積就是矩形ABCO的面積;
∵拋物線l1的解析式是y=(x﹣2)2﹣2,
∴拋物線l1與x軸分別交于O(0,0)、A(4,0)兩點(diǎn),
∴OA=4;
∴OAAB=16,
∴AB=4;
∴l(xiāng)2是由拋物線l1向上平移4個(gè)單位得到的,
∴l(xiāng)2的解析式為:y=(x﹣2)2﹣2+4,即y=(x﹣2)2+2.
故選C.
【考點(diǎn)精析】掌握二次函數(shù)圖象的平移是解答本題的根本,需要知道平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(diǎn)(h,k)(2)對(duì)x軸左加右減;對(duì)y軸上加下減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,以O(shè)B為直徑畫圓M,過D作⊙M的切線,切點(diǎn)為N,分別交AC、BC于點(diǎn)E、F,已知AE=5,CE=3,則DF的長(zhǎng)是( 。
A.3
B.4
C.4.8
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在ABCD中,延長(zhǎng)DA到點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使得AE=CF,連接EF,分別交AB,CD于點(diǎn)H,G,連接DH,BG.
(1)求證:△AEH≌△CFG;
(2)連接BE,若BE=DE,則四邊形BGDH是什么特殊四邊形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,DE⊥AB于E,DF⊥BC于F.
(1)求證:△ADE≌△CDF;
(2)若∠EDF=50°,求∠BEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的告訴發(fā)展,小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過千克的,按每千克元收費(fèi);超過千克,超過的部分按每千克元收費(fèi).設(shè)小明快遞物品千克.
用含有的代數(shù)式表示小明快遞物品的費(fèi)用;
若小明快遞物品千克,應(yīng)付快遞費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AD方向向點(diǎn)D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開始沿著CB方向向點(diǎn)B以3cm/s的速度運(yùn)動(dòng).點(diǎn)P、Q分別從點(diǎn)A和點(diǎn)C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng).
(1)經(jīng)過多長(zhǎng)時(shí)間,四邊形PQCD是平行四邊形?
(2)經(jīng)過多長(zhǎng)時(shí)間,四邊形PQBA是矩形?
(3)經(jīng)過多長(zhǎng)時(shí)間,當(dāng)PQ不平行于CD時(shí),有PQ=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx-5的圖象經(jīng)過點(diǎn)A(2,-1).
(1)求k的值;
(2)畫出這個(gè)函數(shù)的圖象;
(3)若將此函數(shù)的圖象向上平移m個(gè)單位后與坐標(biāo)軸圍成的三角形的面積為1,請(qǐng)直接寫出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)能被13整除的自然數(shù)我們稱為“十三數(shù)”,“十三數(shù)”的特征是:若把這個(gè)自然數(shù)的末三位與末三位以前的數(shù)字組成的數(shù)之差,如果能被13整除,那么這個(gè)自然數(shù)就一定能被13整除.例如:判斷383357能不能被13整除,這個(gè)數(shù)的末三位數(shù)字是357,末三位以前的數(shù)字組成的數(shù)是383,這兩個(gè)數(shù)的差是383﹣357=26,26能被13整除,因此383357是“十三數(shù)”.
(1)判斷3253和254514是否為“十三數(shù)”,請(qǐng)說明理由.
(2)若一個(gè)四位自然數(shù),千位數(shù)字和十位數(shù)字相同,百位數(shù)字與個(gè)位數(shù)字相同,則稱這個(gè)四位數(shù)為“間同數(shù)”.
①求證:任意一個(gè)四位“間同數(shù)”能被101整除.
②若一個(gè)四位自然數(shù)既是“十三數(shù)”,又是“間同數(shù)”,求滿足條件的所有四位數(shù)的最大值與最小值之差.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com