【題目】如圖,在矩形ABCD中,點E是AD的中點,∠EBC的平分線交CD于點F.將△DEF沿EF折疊,點D恰好落在BE上M點處,延長BC、EF交于點N, 有下列四個結論:① DF=CF;② BF⊥EN;③△BEN是等邊三角形;④ S△BEF=3S△DEF. 其中,正確的結論有( )
A.1個 B.2個 C.3個 D.4個
【答案】C
【解析】
試題分析:∵四邊形ABCD是矩形,∴∠D=∠BCD=90°,由折疊的性質可得:∠EMF=∠D=90°,DF=MF,
即FM⊥BE,CF⊥BC, ∵BF平分∠EBC, ∴CF=MF, ∴DF=CF;故①正確;
∵∠BFM=90°﹣∠EBF,∠BFC=90°﹣∠CBF, ∴∠BFM=∠BFC, ∵∠MFE=∠DFE=∠CFN,
∴∠BFE=∠BFN, ∵∠BFE+∠BFN=180°, ∴∠BFE=90°, 即BF⊥EN,故②正確;
∵在△DEF和△CNF中,∠D=∠FCN=90°,DF=CF,∠DFE=∠CFN∴△DEF≌△CNF(ASA),
∴EF=FN, ∴BE=BN, 但無法求得△BEN各角的度數(shù), ∴△BEN不一定是等邊三角形;故③錯誤;
∵∠BFM=∠BFC,BM⊥FM,BC⊥CF, ∴BM=BC=AD=2DE=2EM, ∴BE=3EM,
∴S△BEF=3S△EMF=3S△DEF;∴④正確.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在□ABCD中,AE是BC邊上的高,將沿方向平移,使點E與點C重合,得.
(1)求證:;
(2)若,當AB與BC滿足什么數(shù)量關系時,四邊形是菱形?并說明理由.
注:(直角三角形中30°角所對直角邊等于斜邊的一半).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的中線,E,F(xiàn)分別是AD和AD延長線上的點,且DE=DF,連接BF,CE、下列說法:①CE=BF;②△ABD和△ACD面積相等;③BF∥CE;④△BDF≌△CDE.其中正確的有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一次函數(shù)y=(k﹣1)x+3的圖象經(jīng)過第一、二、四象限,則k的取值范圍是( )
A.k>0
B.k<0
C.k>1
D.k<1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A(-1,y1)、B(2,y2)、C(-3,y3)在函數(shù)y=-2(x+1)2+3的圖像上,則y1、y2、y3的大小關系是
A. y1< y2< y3 B. y1< y3 < y2 C. y2 < y3 < y1 D. y3< y2 < y1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,a,b,c分別為∠A,∠B,∠C所對的邊,我們稱關于x的一元二次方程為“△ABC的☆方程”.根據(jù)規(guī)定解答下列問題:
(1)“△ABC的☆方程” 的根的情況是______(填序號):
①有兩個相等的實數(shù)根;②有兩個不相等的實數(shù)根;③沒有實數(shù)根;
(2)如圖,AD為⊙O的直徑,BC為弦, BC⊥AD于E,∠DBC=30°,求“△ABC的☆方程” 的解;
(3)若x=是“△ABC的☆方程” 的一個根,其中a,b,c均為整數(shù),且,求方程的另一個根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內接四邊形,BC的延長線與AD的延長線交于點E,且DC=DE.
(1)求證:∠A=∠AEB;
(2)連接OE,交CD于點F,OE⊥CD,求證:△ABE是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】意大利著名數(shù)學家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,請根據(jù)這組數(shù)的規(guī)律寫出第10個數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子中裝著5個完全相同的小球,分別標有數(shù)字0,1,,2,-1,-2,從袋中隨機取出一個小球。
(1)隨機地從布袋中摸出一個小球,則摸出的球上數(shù)字為正數(shù)的概率為
(2)若第一次從布袋中隨機摸出一個小球,設記下的數(shù)字為x,再將此球放回盒中,第二次再從布袋中隨機抽取一張,設記下的數(shù)字為y,記M(x,y),請用畫樹狀圖或列表法列舉出點M所有可能的坐標,并求點M位于第二象限的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com