【題目】如圖,邊長為a的菱形ABCD中,∠DAB=60°,E是異于A、D兩點的動點,F是CD上的動點,滿足AE+CF=a,△BEF的周長最小值是( 。
A. B. C. D.
【答案】B
【解析】
連接BD,可證△ABE≌△DBF,可得BE=BF,可得△BEF為等邊三角形,可得,△BEF的周長為3BE,所以當BE垂直AD時,可求△BEF的周長最小值.
解:連接BD
∵ABCD是菱形,∠DAB=60°
∴AB=AD=CD=BC=a,∠C=∠A=60°,∠ADC=∠ABC=120°
∴△ADB,△BDC為等邊三角形,
∴∠ADB=∠ABD=60°=∠BDC=∠DBC,AD=BD=a.
∵AE+CF=a,AE+ED=a,CF+DF=a
∴DF=AE,DE=CF,
∵AE=DF,BD=AB,∠A=∠CDB
∴△AEB≌△DFB
∴BE=BF,∠ABE=∠DBF
∵∠ABE+∠DBE=60°
∴∠DBF+∠DBE=60°即∠EBF=60°
∴△BEF為等邊三角形.
∴△BEF的周長=3BE
根據(jù)垂線段最短,即當BE⊥AD時,BE值最。
在Rt△AEB中,AB=a,∠A=60°
∴AE=a,BE=a
∴△BEF的周長最小值是,
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】解決以下問題:
(1)已知方程組和方程組有相同的解,求的值;
(2)已知甲、乙兩人解關(guān)于的方程組甲正確解出而乙把抄錯,結(jié)果解得求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠MON=90°,點A,B分別在射線OM,ON上運動,BE平分∠ABN,BE的反向延長線與∠BAO的平分線交于點C.
(1)當點A,B移動后,∠BAO=45°時,∠C=________;
(2)當點A,B移動后,∠BAO=60°時,∠C=________;
(3)由(1)(2)猜想∠C是否隨點A,B的移動而發(fā)生變化,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的袋子里裝有8個紅球,4個黃球,3個白球,他們除了顏色外都相同,兩人做游戲,游戲規(guī)則如下:一個人抓住袋子,一個人摸球,若摸出紅球,摸球者勝,否則拿袋子的人獲勝.
(1)如果你參加游戲,為了盡可能的獲勝,你是做摸球的人還是做拿袋子的人?為什么?
(2)你說這個游戲公平嗎?如果公平,說明理由:如果不公平,請給出修改建議,使它對雙方都是公平的.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,∠MON=70°,點A、B在∠MON的兩條邊上運動,∠MAB與∠NBA的平分線交于點P.
(1)點A、B在運動過程中,∠P的大小會變嗎?如果不會,求出∠P的度數(shù);如果會,請說明理由.
(2)如圖②,繼續(xù)作BC是平分,AP的反向延長線交BC的延長線于點D,點A、B在運動過程中,∠D的大小會變嗎?如果不會,求出∠D的度數(shù);如果會,請說明理由.
(3)如圖②,∠P和∠D有怎樣的數(shù)量關(guān)系?(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=60°,點P是射線M上一動點(與點A不重合),BC,BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.
(1)∠CBD=
(2)當點P運動到某處時,∠ACB=∠ABD,則此時∠ABC=
(3)在點P運動的過程中,∠APB與∠ADB的比值是否隨之變化?若不變,請求出這個比值:若變化,請找出變化規(guī)律.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】經(jīng)過建設(shè)者三年的努力,貫穿四川的“遂內(nèi)高速”正式通車,已知原來從遂寧到內(nèi)江的公路長150km,高速公路路程比公路縮短30km,一輛小車從遂寧到內(nèi)江走高速公路的平均速度可以提高到原來的1.5倍,用時比原來減少1小時,求小車原來的平均速度和走高速的平均速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在綜合與實踐課上,同學們以“一個含的直角三角尺和兩條平行線”為背景開展數(shù)學活動,如圖,已知兩直線且和直角三角形,,,.
操作發(fā)現(xiàn):
(1)在如圖1中,,求的度數(shù);
(2)如圖2,創(chuàng)新小組的同學把直線向上平移,并把的位置改變,發(fā)現(xiàn),說明理由;
實踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,將如圖中的圖形繼續(xù)變化得到如圖,平分,此時發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請直接寫出與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC 中,AD⊥BC 于點 D,BE 是∠ABC 的平分線,若∠DAC=30°,∠BAC=80°,求:∠AOB 的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com