【題目】如圖所示,OA⊥OC,OB⊥OD,下面結論中,其中說法正確的是(  )
①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.
A.①②③
B.①②④
C.①③④
D.②③④

【答案】C
【解析】由題意可知,OA⊥OC,所以∠AOC=90°,即∠AOB+∠BOC=90°.同時,OB⊥OD,所以∠BOD=90°,即∠COD+∠BOC=90°.依次,可以判定∠AOB=∠COD,所以①正確.又因為不能推斷出∠AOB與∠COD的具體角度,所以②不正確.∠AOD=∠AOB+∠BOC+∠COD,所以∠BOC+∠AOD=∠BOC+∠AOB+∠BOC+∠COD=90°+90°=180°.因為∠AOB=∠COD,所以∠AOC-∠COD=∠AOC-∠AOB=∠BOC,所以④正確.為此,選C.
【考點精析】解答此題的關鍵在于理解垂線的性質的相關知識,掌握垂線的性質:1、過一點有且只有一條直線與己知直線垂直.2、垂線段最短.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O1和⊙O2相交,圓心距d5,⊙O1的半徑為3,那么⊙O2的半徑r的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】據國家統(tǒng)計局數(shù)據,2018年全年國內生產總值為90.3萬億,比2017年增長6.6%.假設國內生產總值的年增長率保持不變,則國內生產總值首次突破100萬億的年份是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】當式子|x+1|+|x﹣6|取得最小值時,x的取值范圍為(  )

A. ﹣1≤x<6 B. ﹣1≤x≤6 C. x=﹣1x=6 D. ﹣1<x≤6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內接于O,ADBC,BEAC,AD,BE相交于點M,若AC=8,BM=4,則O的半徑等于(

A.2 B.2 C.4 D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC上任意一點,過D分別向AB、AC引垂線,垂足分別為E、F點.

1)當點DBC的什么位置時,DE=DF?并證明.

2)在滿足第一問的條件下,連接AD,此時圖中共有幾對全等三角形?并請給予寫出(不 必證明).

3)過C點作AB邊上的高CG,請問DEDFCG的長之間存在怎樣的等量關系?并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=2x2分別與x軸、y軸相交于M,N兩點,并且與雙曲線y=(k>0)相交于A,B兩點,過點A作ACy軸于點C,過點B作BDx軸于點D,AC與BD的延長線交于點E(m,n).

(1)求證:

(2)若,求>2x2的x的取值范圍;

(3)在(2)的條件下,P為雙曲線上一點,以OB,OP為鄰邊作平行四邊形,且平行四邊形的周長最小,求第四個頂點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,放置在水平桌面上的臺燈的燈臂AB長為40cm,燈罩BC長為30cm,底座厚度為2cm,燈臂與底座構成的BAD=60°.使用發(fā)現(xiàn),光線最佳時燈罩BC與水平線所成的角為30°,此時燈罩頂端C到桌面的高度CE是多少cm?

(結果精確到0.1cm,參考數(shù)據:1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】上星期我市某水果價格呈上升趨勢,某超市第一次用1000元購進的這種水果很快賣完,第二次又用960元購進該水果,但第二次每千克的進價是第一次進價的1.2倍,購進數(shù)量比第一次少了20千克.

(1)求第一次購進這種水果每千克的進價是多少元?

(2)本星期受天氣影響,批發(fā)市場這種水果的數(shù)量有所減少.該超市所購進的數(shù)量比上星期所進購的總量減少了4a%,每千克的進價在上星期第二次進價的基礎上上漲5a%,結果本星期進貨總額比上星期進貨總額少16元,求a的值.

查看答案和解析>>

同步練習冊答案